• Title/Summary/Keyword: SimPowerSystems

Search Result 273, Processing Time 0.035 seconds

A Matlab/Simulink-Based PV array-Supercapacitor Model Employing SimPowerSystem and Stateflow Tool Box

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.18-29
    • /
    • 2014
  • This paper proposes the integration of photovoltaic (PV) and energy storage systems for sustained power generation. In this proposed system, whenever the PV system cannot completely meet load demands, the super capacitor provides power to meet the remaining load. A power management strategy is designed for the proposed system to manage power flows between PV array systems and supercapacitors (SC). The main task of this study was to design PV systems with storage strategies including MPPT with direct control and an advanced DC-link controller and to analyze dynamic model proposed for a PV-SC hybrid power generation system. In this paper, the simulation models for the hybrid energy system are developed using Matlab/Simulink, SimPowerSystems and Matlab/Stateflow tool. This is the key innovative contribution of the research paper. The system performances are verified by carrying out simulation studies using practical load demand profile and real weather data.

Development of a Power Plant Simulation Tool with GUI based on General Purpose Design Software

  • Kim Dong Wook;Youn Cheong;Cho Byung-Hak;Son Gihun
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.493-501
    • /
    • 2005
  • A power plant simulation tool ('PowerSim') has been developed with 10 years experience from the development of a plant simulator for efficient modeling of a power plant. PowerSim is the first developed tool in Korea for plant simulation with various plant component models, instructor station function and the Graphic Model Builder (GMB). PowerSim is composed of a graphic editor using general purpose design software, a netlist converter, component models, the scheduler, Instructor Station and an executive. The graphic editor generates a netlist that shows the connection status of the various plant components from the Simdiagram, which is drawn by Icon Drag method supported by GUI environment of the PowerSim. Netlist Converter normalizes the connection status of the components. Scheduler makes scheduling for the execution of the device models according to the netlist. Therefore, the user makes Simdiagram based on the plant Pipe and Instrument Drawing (P&ID) and inputs the plant data for automatic simulating execution. This paper introduces Graphic Model Builder (GMB), instructor station, executive and the detailed introduction of thermal-hydraulic modeling. This paper will also introduce basic ideas on how the simulation Diagram, based on netlist generated from general purpose design software, is made and how the system is organized. The developed tool has been verified through the simulation of a real power plant.

A Variable Step Size Incremental Conductance MPPT of a Photovoltaic System Using DC-DC Converter with Direct Control Scheme

  • Cho, Jae-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.74-82
    • /
    • 2013
  • This paper presents a novel maximum power point tracking for a photovoltaic power (PV) system with a direct control plan. Maximum power point tracking (MPPT) must usually be integrated with photovoltaic (PV) power systems so that the photovoltaic arrays are able to deliver maximum available power. The maximum available power is tracked using specialized algorithms such as Perturb and Observe (P&O) and incremental Conductance (indCond) methods. The proposed method has the direct control of the MPPT algorithm to change the duty cycle of a dc-dc converter. The main difference of the proposed system to existing MPPT systems includes elimination of the proportional-integral control loop and investigation of the effect of simplifying the control circuit. The proposed method thus has not only faster dynamic performance but also high tracking accuracy. Without a conventional controller, this method can control the dc-dc converter. A simulation model and the direct control of MPPT algorithm for the PV power system are developed by Matlab/Simulink, SimPowerSystems and Matlab/Stateflow.

Power control strategies of a DC-coupled hybrid power system for a building microgrid

  • Cho, Jea-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.3
    • /
    • pp.50-64
    • /
    • 2011
  • In this paper, a DC-coupled photovoltaic (PV), fuel cell (FC) and ultracapacitor hybrid power system is studied for building microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. The main weak point of the FC system is slow dynamics, because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. A power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build an autonomous system with pragmatic design, and a dynamic model proposed for a PV/FC/UC bank hybrid power generation system. A simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Matlab/Stateflow. The system performance under the different scenarios has been verified by carrying out simulation studies using a practical load demand profile, hybrid power management and control, and real weather data.

A Multiagent-Based Hybrid Power Control and Management of Distributed Power Sources

  • Yoon, Gi-Gab;Hong, Won-Pyo;Lee, Ki-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.70-81
    • /
    • 2011
  • In this paper, a multi-agent control system for DC-coupled photovoltaic (PV), fuel cell (FC), ultracapacitor(UC) and battery hybrid power system is studied for commercial buildings & apartment buildings microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. A multi-agent system based-power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build the multi-agent control system with pragmatic design, and a dynamic model proposed for a PV/FC/UC/battery bank hybrid power generation system. A dynamic simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Stateflow. Simulation results are also presented to demonstrate the effectiveness of the proposed multi-agent control and management system for building microgrid.

Development of Variable Torque Inverter from $37{\sim}280[kW]$ to 280[kW] ($37{\sim}280[kW]$ VT 인버터 개발)

  • Kwon, B.H.;Kim, J.H.;Na, S.H.;Hong, C.O.;Lee, J.P.;Park, C.H.;Park, E.S.;Kim, K.M.;Yoon, H.M.;Lee, K.J.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.51-53
    • /
    • 2005
  • This paper focuses on the power circuit section of newly developed LSIS inverter for the variable torque application and presents the detailed explanation on the power circuits as well as its application-specific functional performance.

  • PDF