• 제목/요약/키워드: Silver ion sensor

검색결과 15건 처리시간 0.02초

Novel Silver(I) Ion Selective PVC Membrane Electrode Based on the Schiff Base (N2E,N2'E)-N2,N2'-Bis(Thiophen-2-ylmethylene)-1,1'-Binaphthyl-2,2'-Diamine

  • Jeong, Eunseon;Ahmed, Mohammad Shamsuddin;Jeong, Hae-Sang;Lee, Eun-Hee;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.800-804
    • /
    • 2011
  • A potentiometric sensor based on the Schiff base $(N^2E,N^{2'}E)-N^2,N^{2'}$-bis(thiophen-2-ylmethylene)-1,1'-binaphthl-2,2'-diamine has been synthesized and explored as an ionophore PVC-based membrane sensor selective for the silver ($Ag^+$) ion. Potentiometric investigations indicate a high affinity of this receptor for the silver ion. Seven membranes have been fabricated with different compositions, with the best performance shown by the membrane with an ionophore composition (w/w) of: 1.0 mg, PVC: 33.0 mg, DOA: 66.0 mg in 1.0 mL THF. The sensor worked well within a wide concentration range of $1.0{\times}10^{-2}$ to $1.0{\times}10^{-7}$ M, at pH 5, at room temperature (slope 57.4 mV/dec.), and with a rapid response time of 9 s; the sensor also showed good selectivity towards the silver ion over a huge number of interfering cations, with the highest selectivity coefficient for $Hg^{2+}$ at -3.7. Thus far, the best lower detection limit was $4.0{\times}10^{-8}$ M.

A New Cone Shaped Asymmetrically Substituted Calix[4]arene as an ExcellentIonophore in Construction of Ag(I) ion-Selective Membrane Electrode

  • Ganjali, Mohammad Reza;Babaei, Leila Hajiagha;Taghvaei-Ganjali, Saeed;Modjallal, Atoosa;Sahmsipur, Mojtaba;Hosseini, Morteza;Javanbakht, Mehran
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.177-181
    • /
    • 2004
  • A PVC membrane electrode for silver ion based on a new cone shaped calix[4]arene (CASCA) as membrane carrier was prepared. The electrode exhibits a Nernstian response for $Ag^+$ over a wide concentration range ($1.0{\times}10^{-1}-8.0{\times}10^{-6}$M) with a slope of 58.2 {\pm}$ 0.5 mV per decade. The limit of detection of the sensor is $5.0{\times}10^{-6}$M. The sensor has a very fast response time (~5 s) in the concentration range of ${\leq}=1.0{\times}10^{-3}$ M, and a useful working pH range of 4.0-9.5. The proposed sensor displays excellent discriminating ability toward $Ag^+$ ion with respect to common alkali, alkaline earth, transition and heavy metal ions. It was used as an indicator electrode in potentiometric titration of $Ag^+$ with EDTA and in direct determination of silver ion in wastewater of silver electroplating.

Polymeric Membrane Silver-ion Selective Electrodes Based on Schiff Base N,N'-Bis(pyridin-2-ylmethylene)benzene-1,2-diamine

  • Seo, Hyung-Ran;Jeong, Eun-Seon;Ahmed, Mohammad Shamsuddin;Lee, Hyo-Kyoung;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1699-1703
    • /
    • 2010
  • The Schiff base N,N'-bis(pyridin-2-ylmethylene)benzene-1,2-diamine [BPBD] has been synthesized and explored as ionophore for preparing PVC-based membrane sensors selective to the silver ($Ag^+$) ion. Potentiometric investigations indicate high affinity of this receptor for silver ion. The best performance was shown by the membrane of composition (w/w) of ionophore: 1 mg, PVC: 33 mg, o-NPOE: 66 mg and additive were added 50 mol % relative to the ionophore in 1 mL THF. The sensor works well over a wide concentration range $1{\times}10^{-3}$ to $1.0{\times}10^{-7}$ M by pH 6 at room temperature (slope 58.6 mV/dec.) with a response time of 10 seconds and showed good selectivity to silver ion over a number of cations. It could be used successfully for the determination of silver ion content in environmental and waste water samples.

Titanium Acetylacetonate as an Excellent Ion-Carrier in Construction of Iodide Sensor

  • Ganjali, Mohammad Reza;Daftari, Azadeh;Mizani, Farhang;Salavati-Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.23-26
    • /
    • 2003
  • Titanium acetylacetonate was used in the construction of a PVC-based membrane electrode. This sensor shows very good selectivity for iodide ion over a wide variety of common inorganic and organic anions. It exhibits Nernstian behavior with a slope of 59.1 mV per decade. The working concentration ranges of the sensor are with a detection limit of $3.0\;{\times}\;10^{-6}\;M$. The response time of the sensor is very fast (<8 s), and can be used for at least twelve weeks in the pH range of 4.0-9.2. The best performance was obtained with a membrane composition of 30% PVC, 65% dibutylphthalate, 3% titanium acetylacetonate and 2% hexadecyltrimethylammonium bromide. The proposed sensor was successfully applied as an indicator electrode for titration of iodide with silver ion.

탄소 및 은 잉크 기반의 전위차 나트륨 이온 센서 제조 및 이의 전기화학적 특성 (Fabrication of Potentiometric Sodium-ion Sensor Based on Carbon and Silver Inks and its Electrochemical Characteristics)

  • 김서진;손선규;윤조희;최봉길
    • 공업화학
    • /
    • 제32권4호
    • /
    • pp.456-460
    • /
    • 2021
  • 본 연구에서는 탄소 및 은 잉크를 사용하여 스크린 인쇄 공정을 통한 전위차 나트륨 이온(Na+) 센서를 제작하였다. 센서의 두 전극 구성은 Na+ 용액에서 네른스트 거동에 따라 전극의 전위차를 발생하였다. 제조된 Na+ 센서는 이상적인 네른스트 민감도, 빠른 응답 시간 및 낮은 검출 한계를 보여주었다. 네른스트 반응은 센서의 반복성 및 장기 내구성 테스트 시 안정적이었다. 탄소 전극에 코팅된 Na+ 선택막은 간섭 이온에 대해 나트륨 이온을 선택적으로 통과시켜 우수한 선택성을 증명하였다. 휴대용 Na+ 센서는 인쇄 회로 시스템을 사용하여 제작되었으며 다양한 실제 샘플에서 Na+ 농도를 성공적으로 측정하는 것을 증명하였다.

MWCNT, silver nanoparticles, CuBTC를 사용한 염소 이온 센서 합성

  • 곽병관;박수빈;유봉영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.101-101
    • /
    • 2018
  • Quantitative measurement of chloride ion concentration has an important role in various fields of electrochemistry, medical science, biology, metallurgy, architecture, etc. Among them, its importance of architecture is ever-growing due to unexpected degradations of building structure. These situations are caused by corrosion of reinforced concrete (RC) structure of buildings. And chloride ions are the most powerful factors of RC structure corrosion. Therefore, precise inspection of chloride ion concentration must be required to increase the accuracy of durability monitoring. Multi-walled Carbon nanotubes (MWCNTs) have high chemical resistivity, large surface area and superior electrical property. Thus, it is suitable for the channels of electrical signals made by the sensor. Silver nanoparticles were added to giving the sensing property. CuBTC, one of the metal organic frameworks (MOFs), was employed as a material to improve the sensing property because of its hydrophilicity and high surface area to volume ratio. In this study, sensing element was synthesized by various chemical reaction procedures. At first, MWCNTs were functionalized with a mixture of sulfuric acid and nitric acid because of enhancement of solubility in solution and surface activation. And functionalized MWCNTs, silver nanoparticles, and CuBTC were synthesized on PTFE membrane, one by one. Electroless deposition process was performed to deposit the silver nanoparticles. CuBTC was produced by room temperature synthesis. Surface morphology and composition analysis were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), respectively. X-ray photoelectron spectroscopy (XPS) was also performed to confirm the existence of sensing materials. The electrical properties of sensor were measured by semiconductor analyzer. The chloride ion sensing characteristics were confirmed with the variation of the resistance at 1 V.

  • PDF

A New PVC-Membrane Electrode Based on a Thia-Substituted Macrocyclic Diamide for Selective Potentiometric Determination of Silver Ion

  • Shamsipur, Mojtaba;Kazemi, Sayed Yahya;Niknam, Khodabaksh;Sharghi, Hashem
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권1호
    • /
    • pp.53-58
    • /
    • 2002
  • A new PVC-membrane electrode for $Ag^+$ ion based on a thia-substituted macrocyclic diamide has been prepared. The electrode exhibited a Nernstian response for $Ag^+$ over a wide concentration range $(1.7{\times}10^{-6}-1.0{\times}10^{-1}M)$. It has a response time <15 s and can be used for at least 3 months without divergence. The proposed membrane sensor revealed good selectivities for $Ag^+$ over a variety of metal ions and can be used in a pH range 3.0-7.5. It has been used successfully for direct determination of $Ag^+$ in different real samples and, as an indicator electrode, in the titration of silver ion.

Selective Trace Analysis of Mercury (II) Ions in Aqueous Media Using SERS-Based Aptamer Sensor

  • Lee, Chank-Il;Choo, Jae-Bum
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2003-2007
    • /
    • 2011
  • We report a highly sensitive surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of mercury (II) ions in drinkable water using aptamer-conjugated silver nanoparticles. Here, an aptamer designed to specifically bind to $Hg^{2+}$ ions in aqueous solution was labelled with a TAMRA moiety at the 5' end and used as a Raman reporter. Polyamine spermine tetrahydrochloride (spermine) was used to promote surface adsorption of the aptamer probes onto the silver nanoparticles. When $Hg^{2+}$ ions are added to the system, binding of $Hg^{2+}$ with T-T pairs results in a conformational rearrangement of the aptamer to form a hairpin structure. As a result of the reduced of electrostatic repulsion between silver nanoparticles, aggregation of silver nanoparticles occurs, and the SERS signal is significantly increased upon the addition of $Hg^{2+}$ ions. Under optimized assay conditions, the concentration limit of detection was estimated to be 5 nM, and this satisfies a limit of detection below the EPA defined limit of 10 nM in drinkable water.

Green Synthesis of Dual Emission Nitrogen-Rich Carbon Dot and Its Use in Ag+ Ion and EDTA Sensing

  • Le Thuy Hoa;Jin Suk Chung;Seung Hyun Hur
    • Korean Chemical Engineering Research
    • /
    • 제61권3호
    • /
    • pp.463-471
    • /
    • 2023
  • Nitrogen-rich carbon dots (NDots) were synthesized by using uric acid as carbon and nitrogen sources. The as-synthesized NDots showed strong dual emissions at 420 nm and 510 nm with excitation at 350 nm and 460 nm, respectively. The physicochemical analyses such as X-ray photoelectron spectroscopy, Transmission electron microscopy and Fourier transform infrared spectroscopy were used to analyze the chemical, physical and morphological structures of NDots. The as-synthesized NDots exhibited wide linear range (0-100 µM) and very low detection limit (124 nM) in Ag+ ion sensing. In addition, Ag+ saturated NDots could be used as an EDTA sensor by the EDTA induced PL recovery.