DOI QR코드

DOI QR Code

Novel Silver(I) Ion Selective PVC Membrane Electrode Based on the Schiff Base (N2E,N2'E)-N2,N2'-Bis(Thiophen-2-ylmethylene)-1,1'-Binaphthyl-2,2'-Diamine

  • Jeong, Eunseon (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Ahmed, Mohammad Shamsuddin (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Jeong, Hae-Sang (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lee, Eun-Hee (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Jeon, Seung-Won (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2010.10.25
  • Accepted : 2010.12.26
  • Published : 2011.03.20

Abstract

A potentiometric sensor based on the Schiff base $(N^2E,N^{2'}E)-N^2,N^{2'}$-bis(thiophen-2-ylmethylene)-1,1'-binaphthl-2,2'-diamine has been synthesized and explored as an ionophore PVC-based membrane sensor selective for the silver ($Ag^+$) ion. Potentiometric investigations indicate a high affinity of this receptor for the silver ion. Seven membranes have been fabricated with different compositions, with the best performance shown by the membrane with an ionophore composition (w/w) of: 1.0 mg, PVC: 33.0 mg, DOA: 66.0 mg in 1.0 mL THF. The sensor worked well within a wide concentration range of $1.0{\times}10^{-2}$ to $1.0{\times}10^{-7}$ M, at pH 5, at room temperature (slope 57.4 mV/dec.), and with a rapid response time of 9 s; the sensor also showed good selectivity towards the silver ion over a huge number of interfering cations, with the highest selectivity coefficient for $Hg^{2+}$ at -3.7. Thus far, the best lower detection limit was $4.0{\times}10^{-8}$ M.

Keywords

References

  1. Drake, P. L.; Hazelwood, K. J. Ann. Occup. Hyg. 2005, 49, 575. https://doi.org/10.1093/annhyg/mei019
  2. Furno, F.; Morley, K. S.; Wong, B.; Sharp, B. L.; Arnold, P. L.; Howdle, S. M.; Bayson, R.; Brown, P. D.; Winship, P. D.; Reid, H. J. J. Antimicrob. Chemother. 2004, 54, 1019. https://doi.org/10.1093/jac/dkh478
  3. Burton, K. C.; Irving, H. M. N. H. Anal. Chim. Acta 1970, 52, 441. https://doi.org/10.1016/S0003-2670(01)82055-9
  4. sramkova, J.; Kotrly, S.; Jakoubkova, P. Anal. Chim. Acta 2000, 408, 183. https://doi.org/10.1016/S0003-2670(99)00810-7
  5. Chung, Y. S.; Barnes, R. M. J. Anal. At. Spectrom. 1998, 3, 1079.
  6. Mitsuo, O.; Kiyotako, K. J. Environ. Chem. 2005, 15, 863. https://doi.org/10.5985/jec.15.863
  7. Shim, J. H.; Jeong, I. S.; Lee, M. H.; Hong, H. P.; On, J. H.; Kim, K. S.; Kim, H-S; Kim, B. H.; Cha, G. S.; Nam, H. Talanta 2004, 63, 61. https://doi.org/10.1016/j.talanta.2003.12.050
  8. Szigeti, Z.; Malon, A.; Vigassy, T.; Csokai, V.; Grün, A.; Wygladacz, K.; Ye, N.; Xu, C.; Chebny, V. J.; Bitter, I.; Rathore, R.; Bakker, E.; Pretsch, E. Anal. Chim. Acta 2006, 572, 1. https://doi.org/10.1016/j.aca.2006.05.009
  9. Ceresa, A.; Radu, A.; Peper, S.; Bakker, E.; Pretsch, E. Anal. Chem. 2002, 74, 4027. https://doi.org/10.1021/ac025548y
  10. Malon, A.; Vigassy, T.; Bakker, E.; Pretsch, E. J. Am. Chem. Soc. 2006, 128, 8154. https://doi.org/10.1021/ja0625780
  11. Wipfe, H. K.; Pioda, L. A. R.; Stefanac, Z.; Simon, W. Helv. Chim. Acta 1968, 51, 377. https://doi.org/10.1002/hlca.19680510218
  12. Hutchins, R. S.; Bachas, L. G. Anal. Chem. 1995, 67, 1654. https://doi.org/10.1021/ac00106a002
  13. Gupta, V. K.; Pal, M. K.; Singh, A. K. Anal. Chim. Acta 2009, 631, 161. https://doi.org/10.1016/j.aca.2008.10.033
  14. Mashhadizadeh, M. H.; Shockravi, A.; Khoubi, Z.; Heidarian, D. Electroanalysis 2009, 21, 1041. https://doi.org/10.1002/elan.200804513
  15. Sil, A.; Ijeri, V. S.; Srivastava, A. K. Anal. Sci. 2001, 17, 477. https://doi.org/10.2116/analsci.17.477
  16. Lu, J. Q.; Pang, D. W.; Zeng, X. S.; He, X. W. J. Electroanal. Chem. 2004, 568, 37. https://doi.org/10.1016/j.jelechem.2004.01.017
  17. Gupta, V. K.; Antonijevic, M. V.; Chandra, S.; Agarwal, S. Sensors 2002, 2, 233. https://doi.org/10.3390/s20600233
  18. Bakker, E.; Buhlmann, P.; Pretsch, E. Chem. Rev. 1997, 97, 3083. https://doi.org/10.1021/cr940394a
  19. Ngeontae, W.; Janrungroatsakul, W.; Morakot, N.; Aeungmaitrepirom, W.; Tuntulani, T. Sens. and Actuators B: Chem. 2008, 134, 377. https://doi.org/10.1016/j.snb.2008.05.010
  20. Mahajan, R. K.; Sood, P.; Mahajan, M. P.; Shing, P. Anal. Sci. 2004, 20, 1423. https://doi.org/10.2116/analsci.20.1423
  21. Colombo, F.; Benaglia, M.; Orlandi, S.; Usuelli, F. J. Mol. Cat. A: Chemical 2006, 260, 128. https://doi.org/10.1016/j.molcata.2006.07.003
  22. Bakker, E.; Buhlmann, P.; Pretsch, E. Electroanalysis 1999, 11, 915. https://doi.org/10.1002/(SICI)1521-4109(199909)11:13<915::AID-ELAN915>3.0.CO;2-J
  23. Craggs, A.; Moody, G. J.; Thomas, J. D. R. J. Chem. Educ. 1974, 51, 541. https://doi.org/10.1021/ed051p541
  24. Moody, G. J.; Oke, R. B.; Thomas, J. D. R. Analyst 1970, 95, 910. https://doi.org/10.1039/an9709500910
  25. Katsu, T.; Ido, K.; Takaishi, K.; Yokosu, H. Sens. Actuators B: Chemical 2002, 87, 331. https://doi.org/10.1016/S0925-4005(02)00264-2
  26. Bakker, E. Anal. Chem. 1997, 69, 1061. https://doi.org/10.1021/ac960891m
  27. Khayatian, G.; Shariati, S.; Salimi, A. Bull. Kor. Chem. Soc. 2003, 24, 421. https://doi.org/10.5012/bkcs.2003.24.4.421
  28. Mahajan, R. K.; Kaur, I.; Sharma, V.; Kumar, M. Sensors 2002, 2, 417. https://doi.org/10.3390/s21000417
  29. Shamsipur, M.; Javanbakht, M.; Lippolis, V.; Garau, A.; De Filippo, G.; Ganjali, M. R.; Yari, A. Anal. Chim. Acta 2002, 462, 225. https://doi.org/10.1016/S0003-2670(02)00374-4
  30. Mashhadizadeh, M. H.; Shamsipur, M. Anal. Chim. Acta 1999, 381, 111. https://doi.org/10.1016/S0003-2670(98)00672-2
  31. Chen, L.; He, X.; Zhang, H.; Liu, Y.; Hu, X.; Sheng, Y. Anal. Lett. 2001, 34, 2237. https://doi.org/10.1081/AL-100107291
  32. Kim, S. M.; Chung, H. J.; Paeng, K-J.; Lee, C-H.; Chio, H. N.; Lee, W.-Y. Anal. Chim. Acta 2002, 453, 81. https://doi.org/10.1016/S0003-2670(01)01493-3

Cited by

  1. Comparative studies on carbon paste electrodes based on three dithiocarbamate podands as ionophore in Ag(i) sensors vol.4, pp.3, 2012, https://doi.org/10.1039/c2ay05559g
  2. To the memory of Hugo Schiff: Applications of Schiff bases in potentiometric sensors vol.87, pp.3, 2014, https://doi.org/10.1134/S1070427214030227
  3. Dealloyed silver nanoparticles as efficient catalyst towards oxygen reduction in alkaline solution vol.32, pp.1, 2016, https://doi.org/10.1007/s40242-016-5277-5
  4. Graphene Supported Silver Nanocrystals Preparation for Efficient Oxygen Reduction in Alkaline Fuel Cells vol.163, pp.10, 2016, https://doi.org/10.1149/2.0511610jes