• Title/Summary/Keyword: Silver ink

Search Result 89, Processing Time 0.029 seconds

A Study of Substrate Surface Treatment and Metal Pattern Formation using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 기판 표면처리와 금속 패턴 형성에 관한 연구)

  • Jo, Yong-Min;Park, Sung-Jun
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • Inkjet printing is one of the direct writing technologies and is able to form a pattern onto substrate by dispensing droplets in desired position. Also, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. To form a metal pattern, it must be harmonized with conductive nano ink, printing process, sintering, and surface treatment. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense $20-40{\mu}m$ diameter droplets and silver nano ink which consists of 50 nm silver particles. In addition, hydrophobic treatment of surface, overlap printing techniques, and sintering conditions with changing temperature and times to achieve higher conductivity.

Printing of Nano-silver Inks with Ink-jet Technology and Surface Treatment (잉크젯 기술자 표면처리 기술을 이용한 나노 실버 잉크 프린팅)

  • Shin, Kwon-Yong;Lee, Sang-Ho;Kim, Myong-Ki;Kang, Heui-Seok;Hwang, Jun-Young;Park, Moon-Soo;Kang, Kyung-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.104-105
    • /
    • 2007
  • In this study, characteristics of silver ink-jet printing were investigated under various substrate treatments such as substrate heating, hydrophobic coating, and ultraviolet(UV)/ozone soaking. Fluorocarbon(FC) film was spin-coated on the polyimide (PI) film substrate to obtain a hydrophobic surface. Although hydrophobicity of the FC film could reduce the diameter of the printed droplets, the singlet images printed on the FC film surface showed irregularities in the pattern size and the position of the printed droplet along with droplet merging phenomenon. The proposed UV/ozone soaking of the FC film improved the uniformity of the pattern size and the droplet position after printing and substrate heating was very effective way in preventing droplet merging. By heating of the substrate after UV/ozone soaking of the coated FC film, silver conductive lines of 78-116 ${\mu}m$ line were successfully printed at low substrate temperatures of $40^{\circ}C$.

  • PDF

Film Coating and Micro - Pattering Process of Nano-particle Conductive Ink System by Using ESD Method

  • Yang, Jong-Won;Jo, Sang-Hyeon;Sin, Na-Ri;Kim, Jin-Yeol
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.238.1-238.1
    • /
    • 2011
  • 본 연구에서는 non-contact deposition method의 일환인 ESD (electroctatic deposition)의 박막공정을 이용하여 Conductive layer 위에 Gold nanoparticles 및 Silver nanoparticles 등 organic/inorganic nano particle conductive ink system의 단분산 2D 박막을 제조를 연구하였다. ESD head를 통해 여러가지 organic / inorganic nano particle conductive ink system을 Deposition하였으며 분산도가 높고 균일한 단분산의 2차원 박막 구조를 얻을 수 있었으며, 전도성 PEDOT과의 Hybridization을 통해 균일상의 표면 Morphology를 갖는 고 전도성 투명 필름을 제작하였다. ESD technique를 이용하는 박막공정 기술은 나노입자 및 나노구조물의 박막화 패턴화를 포함하는 새로운 Deposition 기술로써 이를 응용하여 금속 나노입자의 2차원의 패턴화된 박막 구현을 통해 유기반도체 및 전자소자에의 응용성을 증거할 수 있었다.

  • PDF

Inkjet patterning of Aqueous Silver Nano Sol on Interface-controlled ITO Glass

  • Ryu, Beyong-Hwan;Choi, Young-Min;Kong, Ki-Jeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1552-1555
    • /
    • 2005
  • We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared by variation of molecular weight and control of initial nucleation and growth of silver nanoparticles. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The fine line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF

The ink jet printing of high conductivity circuits on various substrates using polymer capped nano-particle silver

  • Edwards, Charles O.;Howarth, James;James, Anthony
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.814-816
    • /
    • 2005
  • In this paper, we describe how specially developed polymer capped, nano-particle silver inks can be used to print circuitry for applications like displays, RFID antennas and "disposable electronics". The requirements of printing on temperature sensitive flexible substrates (such as polymer films and papers) that require low temperature curing is also discussed.

  • PDF

Enhancement of Electrical Conductivity for Ag Grid using Electrical Sintering Method (정전류 전기 소결법을 이용한 Ag 전극 배선의 전도성 향상)

  • Hwang, Jun Y.;Moon, Y.J.;Lee, S.H.;Kang, K.;Kang, H.;Cho, Y.J.;Moon, S.J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Electrical sintering of the front electrode for crystalline silicon solar cells was performed applying a constant DC current to the printed lines. Conducting lines were printed on glass substrate by a drop-on-demand (DOD) inkjet printer and silver nanoparticle ink. Specific resistance and microstructure of sintered silver lines and were measured with varying DC current. To find the relation between temperature increase with changing applied current and specific resistance, temperature elevation was also calculated. Sintering process finished within a few milliseconds. Increasing applied DC current, specific resistance decreased and grain size increased after sintering. Achieved minimum specific resistance is approximately 1.7 times higher than specific resistance of the bulk silver.

  • PDF

Fabrication of Micro Pattern on Flexible Substrate by Nano Ink using Superhydrophobic Effect (초발수 현상을 이용한 나노 잉크 미세배선 제조)

  • Son, Soo-Jung;Cho, Young-Sang;Rha, Jong Joo;Cho, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.120-124
    • /
    • 2013
  • This study is carried out to develop the new process for the fabrication of ultra-fine electrodes on the flexible substrates using superhydrophobic effect. A facile method was developed to form the ultra-fine trenches on the flexible substrates treated by plasma etching and to print the fine metal electrodes using conductive nano-ink. Various plasma etching conditions were investigated for the hydrophobic surface treatment of flexible polyimide (PI) films. The micro-trench on the hydrophobic PI film fabricated under optimized conditions was obtained by mechanical scratching, which gave the hydrophilic property only to the trench area. Finally, the patterning by selective deposition of ink materials was performed using the conductive silver nano-ink. The interface between the conductive nanoparticles and the flexible substrates were characterized by scanning electron microscope. The increase of the sintering temperature and metal concentration of ink caused the reduction of electrical resistance. The sintering temperature lower than $200^{\circ}C$ resulted in good interfacial bonding between Ag electrode and PI film substrate.

Investigation on Microstructure and Electrical Properties of Silver Conductive Features Using a Powder Composed of Silver nanoparticles and Nanoplatelets (은 나노입자-나노플레이트 혼합 분말로 형성된 은 전도성 배선의 미세조직 및 전기적 특성 연구)

  • Goo, Yong-Sung;Choa, Yong-Ho;Hwangbo, Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.358-363
    • /
    • 2016
  • Noncontact direct-printed conductive silver patterns with an enhanced electrical resistivity are fabricated using a silver ink with a mixture of silver nanoparticles and nanoplates. The microstructure and electrical resistivity of the silver pattern are systematically investigated as a function of the mixing ratio of the nanoparticles and nanoplates. The pattern, which is fabricated using a mixture with a mixing ratio of 3(nanoparticles):7(nanoplates) and sintered at $200^{\circ}C$ shows a highly dense and well-sintered microstructure and has a resistivity of $7.60{\mu}{\Omega}{\cdot}cm$. This originates a mutual synergistic effect through a combination of the sinterability of the nanoparticles and the packing ability of the nanoplates. This is a conductive material that can be used to fabricate noncontact direct-printed conductive patterns with excellent electrical conductivity for various flexible electronics applications, including solar cells, displays, RFIDs, and sensors.

Pattern Characteristic by Electrostatic Field Induced Drop-On-Demand Ink-jet Printing

  • Choi, J.Y.;Kim, Y.J.;Son, S.U.;Kim, Y.M.;Lee, S.H.;Byun, D.Y.;Ko, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.451-454
    • /
    • 2007
  • This paper presents the pattern characteristic using the electrostatic drop-on-demand ink-jet printing system. In order to achieve the pattern characteristic of electrostatic inkjet printing, the capillary inkjet head system is fabricated using capillary tube, Pt wire and electrode, and is packaged by acrylic board for the accurate alignment between wire and electrode-hole. The applied DC voltage of 1.4 $\sim$ 2.0 kV used for the observation of electrostatic droplet ejection. Electrostatic droplet ejection is directly observed using a high-speed camera. For investigated pattern characteristic, conductive inkjet silver ink used. The higher voltage has a good condition which has micro dripping mode. Also, the droplet size decreases with increasing the supplied DC voltage. This paper shows the pattern which is formed by about 300um. Also, capillary inkjet head system will be applied industrial area comparing conventional electrostatic inkjet head system.

  • PDF