• Title/Summary/Keyword: Silver complex

Search Result 159, Processing Time 0.021 seconds

Ionic Liquid as a solvent and Long-Term Separation Performance in Polymer/Silver Salt Complex Membrane

  • Kang, Sang-Wook;Kim, Jong-Hak;Char, Kook-Heon;Kang, Yong-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.307-307
    • /
    • 2006
  • The reduction behavior of silver ions to silver nanoparticles is an important research topic in polymer/silver salt complex membranes for facilitated olefin transport, because it has a significant effect on the long-term stability of membrane performance. In this study, the effects of solvent on the formation of silver nanoparticles and long-term membrane performance in polymer/silver salt complex membrane were investigated. This effect was assessed for the complexes of poly(N-vinyl pyrrolidone) $(PVP)/AgBF_{4}$ with the use of ionic liquid (IL), acetonitrile (ACN) and water as a solvent. Membrane performance test shows that long-term stability is strongly dependent on the kind of solvent and arranged: IL > ACN >> water.

  • PDF

A Facile Preparation of Silver Nanocolloids by Hydrogen Reduction of a Silver Alkylcarbamate Complex

  • Hong, Hyun-Ki;Gong, Myoung-Seon;Park, Chan-Kyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2669-2674
    • /
    • 2009
  • Controlled reduction of silver alkylcarbamate complexes with hydrogen gas was investigated as a facile synthetic method for high concentrations of silver nanocolloids in organic solvent. Polyvinylpyrrolidone (PVP) was used to stabilize the silver colloids obtained from the chemical reduction. To determine optimum conditions for preparation of the stable and controlled silver colloids with the narrowest particle size and distribution, a large number of experiments were carried out involving variations in the concentrations of the silver 2-ethylhexylcarbamate (Ag-EHCB) complex, PVP, and 2-propanol. The initial colloid had a mean particle diameter between 5$\sim$50 nm, as measured by transmission electron microscopy, and exhibited a sharp absorption band in the UV region with a maximum size near 420 nm. After treatment with a reducing agent, the colloids were characterized by ultraviolet-visible spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy.

Preparation of New Polyelectrolyte/ Silver Nanocomposites and Their Humidity-Sensitive Properties

  • Park, Min-Su;Lim, Tae-Ho;Jeon, Young-Min;Kim, Jong-Gyu;Gong, Myoung-Seon;Joo, Sang-Woo
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.308-313
    • /
    • 2008
  • A simple strategy was developed based on polyelectrolyte/silver nanocomposite to obtain humidity-sensitive membranes. The major component of a humid membrane is the polyTEAMPS/silver nanocomposite obtained by thermal heating the mixture of a polyelectrolyte and silver isopropylcarbamate complex. Humidity sensors prepared from polyTEAMPS/silver (w/w=100/0 and 100/6) nanocomposites had an average impedance of 292, 8.83 and $0.86\;k{\Omega}$, and 5,327, 140 and $0.93\;k{\Omega}$ at 30,60 and 95% relative humidity (RH), respectively. Hysteresis, temperature dependence and response time were also measured. Activation energies and complex impedance spectroscopy of the various components of the polyelectrolyte/silver nanocomposite films were examined for the humidity-sensing membrane.

Preparation of Silver/Polystyrene Beads via in Sito Reduction of Silver Alkylcarbamate Complex (은 알킬카바메이트 복합체의 환원에 의한 은/폴리스티렌 비드의 제조)

  • Lim, Tae-Ho;Jeon, Young-Min;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • Monodisperse polystyrene and its copolymer beads containing amine function were prepared for the electroless silver plating using reduction of silver alkylcarbamate complex in organic solvent. Soap-free emulsion polymerization was adopted for the polymerization of styrene, divinylbenzene (DVB), and 2-(N,N-dimethylamino) ethyl methacrylate (DAEMA) in the presence of poly (vinyl alcohol) in a water/methanol solvent. The resulting poly (styrene/DVB/DAEMA), containing 30/0$\sim$1.5/0$\sim$3 wt% in monomer composition, were found to be a sphere-type particle with diameter of 1 ${\mu}m$. Silver Ag-coated polystyrene beads were prepared by in sito reduction of a silver 2-ethylhexylcarbamate (Ag-EHCB) complex solution with hydrazine without pretreatment of polystyrene beads. Robust Ag/polystyrene beads were analyzed by SEM, UV -visible spectrometer and XRD.

Coordination Modes and Properties of Ag(I) Complex with N,N,N',N',N''-Pentamethyldiethylenetriamine

  • Chun, In-Sung;Kwon, Jung-Ah;Bae, Myung-Nam;Lee, Sim-Seong;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1005-1008
    • /
    • 2006
  • The reaction of $AgClO_{4}$ with acyclic potential tridentate N,N,N',N',N''-pentamethyldiethylenetriamine (pmdeta) has given colorless crystals suitable for X-ray crystallography. The crystal structure ($P2_{1}$/n, a = 14.413(1) $\AA$, b = 25.270(2) $\AA$, c = 16.130(1) $\AA$, b = $103.012(1){^{\circ}}$, V = 5723.7(8) A$\AA^{3}$, Z = 4, R = 0.0349) has been solved and refined. Three silver(I) ions connect four pmdeta ligands to produce discrete complex of $[Ag_3(pmdeta)_4](ClO_4)_3$. A pmdeta ligand is bridged to three silver(I) ions, and three other pmdeta ligands are chelated to each silver(I) center in a tridentate mode. Thus, the product is a rare tri-nuclear silver(I) complex with two different chemical environments. $^{13}C$ NMR and $MAS\;^{13}$C NMR indicate that the tri-nuclear silver(I) complex is not rigid in solution. The contact angles and thermal analyses of the complex are measured and discussed.

Selective Coordination of Silver Ions to Poly(styrene-b-(ethylene-co-butylene)-b-styrene) and its Influence on Morphology and Facilitated Olefin Transport

  • Lee, Dong-Hoon;Kang, Yong-Soo;Kim, Jong-Hak;Kang, Sang-Wook
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.676-681
    • /
    • 2008
  • The $\pi$-complex membranes of poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) of two silver salts of $AgBF_4$ and $AgCF_3SO_3$ were prepared and tested for the separation of the propylene/propane mixtures. The Fourier-transform infrared (FT-IR) spectra of these complexes showed that the silver salts were dissolved in SEBS up to a silver mole fraction of 0.14, due to $\pi$-complexation between the aromatic C=C bonds of styrene blocks and silver ions. Above this solubility limit, ion pairs and high-order ionic aggregates began to form, so that silver salts were distributed unselectively in both the EB and PS blocks. The domain size of the PS blocks was enlarged up to this critical concentration with increasing silver concentration without structural transitions, as confirmed by small angle x-ray scattering (SAXS). These structural properties of the SEBS/silver salt complexes may explain the lower separation properties for propylene/propane mixtures compared to poly(styrene-b-butadiene-b-styrene)(SBS)/silver salt complex membranes.

Study on Synthesis of Honeycomb-patterned Resin Dispersed Silver Nanoparticles (은 나노입자가 분산된 Honeycomb-patterned 수지 합성에 대한 연구)

  • Lee, Dong Chang;Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.711-718
    • /
    • 2017
  • Silver nanoparticles were attached by chemical reduction after synthesizing a porous PVK-CTA complex. The PVK-CTA complex was synthesized by polymerizing N-vinylcarbazole in a CTA-chloroform solution using iron(III) chloride as an oxidizing agent and a honeycomb-pattern with uniformly formed macropores was formed by applying steam to the complex surface soaked with a volatile solvent under humid conditions. Using TTF as a reducing agent and PVP as a dispersant, silver nanoparticles were attached on the Honeycomb-pattern complex surface through chemical reduction. The formation of the complex was confirmed by FT-IR and UV-Vis spectrometry, and the degree of thermal decomposition of the complexes was analyzed after N-vinylcarbazole was polymerized by varying its concentration. The uniformity of the pores on the composite surface and the dispersibility of the attached silver nanoparticles were investigated by SEM. The dispersibility of the silver nanoparticles was also analyzed by varying the concentrations of reducing agent and dispersant and precursor.

Quantitative analysis of silver in chlorinated polymer (Chlorine을 함유한 고분자 물질 중 Ag의 정량분석)

  • Lim, Heon-Sung;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.376-380
    • /
    • 2005
  • Quantitative analysis of silver from the thermal decomposition of chlorinated polymer contained nano silver is described. The chlorine contained in the chlorinated polymer (e.g. PVC) is liberated as hydrochloric acid gas by heating and a lot of silver produces AgCl. $HNO_3$ and $NH_4OH$ were used for dissolving the Ag and the AgCl. The silver complex was formed by $NH_4OH$. Then the complex was decomposed to silver by heating at $500^{\circ}C$ and the Ag was dissolved by dilute $HNO_3$. Recovery of silver in PVC material was 99.0%.