Selective Coordination of Silver Ions to Poly(styrene-b-(ethylene-co-butylene)-b-styrene) and its Influence on Morphology and Facilitated Olefin Transport

  • Lee, Dong-Hoon (Department of Chemical Engineering, Hanyang University) ;
  • Kang, Yong-Soo (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Jong-Hak (Department of Chemical Engineering, Yonsei University) ;
  • Kang, Sang-Wook (School of Chemical & Biological Engineering, Seoul National University)
  • Published : 2008.12.31

Abstract

The $\pi$-complex membranes of poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) of two silver salts of $AgBF_4$ and $AgCF_3SO_3$ were prepared and tested for the separation of the propylene/propane mixtures. The Fourier-transform infrared (FT-IR) spectra of these complexes showed that the silver salts were dissolved in SEBS up to a silver mole fraction of 0.14, due to $\pi$-complexation between the aromatic C=C bonds of styrene blocks and silver ions. Above this solubility limit, ion pairs and high-order ionic aggregates began to form, so that silver salts were distributed unselectively in both the EB and PS blocks. The domain size of the PS blocks was enlarged up to this critical concentration with increasing silver concentration without structural transitions, as confirmed by small angle x-ray scattering (SAXS). These structural properties of the SEBS/silver salt complexes may explain the lower separation properties for propylene/propane mixtures compared to poly(styrene-b-butadiene-b-styrene)(SBS)/silver salt complex membranes.

Keywords

References

  1. R. L. Burns and W. J. Koros, J. Membr. Sci., 211, 299 (2003) https://doi.org/10.1016/S0376-7388(02)00430-1
  2. J. P. C. M. Van Dongen and C. D. M. Beverwijk, J. Organomet. Chem., 51, C36 (1973) https://doi.org/10.1016/S0022-328X(00)93492-2
  3. H. Y. Huang, J. Padin, and R. T. Yang, J. Phys. Chem. B, 103, 3206 (1999) https://doi.org/10.1021/jp982857c
  4. D. J. Safarik and R. B. Eldridge, Ind. Eng. Chem. Res., 37, 2571 (1998) https://doi.org/10.1021/ie970897h
  5. W. S. Ho and D. C. Dalrtmple, J. Membr. Sci., 91, 13 (1994) https://doi.org/10.1016/0376-7388(94)00008-5
  6. J. S. Yang and G. H. Hsiue, J. Membr. Sci., 111, 17 (1996)
  7. D. S. Manley, D. L. Williamson, R. D. Noble, and C. A. Koval, Chem. Mater., 8, 2595 (1996) https://doi.org/10.1021/cm950506u
  8. S. W. Kang, K. Char, J. H. Kim, and Y. S. Kang, Macromol. Res., 15, 167 (2007) https://doi.org/10.1007/BF03218769
  9. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, Macromolecules, 34, 6052 (2001) https://doi.org/10.1021/ma0020032
  10. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, Macromolecules, 35, 5250 (2002) https://doi.org/10.1021/ma020179t
  11. J. H. Kim, B. R. Min, Y. W. Kim, S. W. Kang, J. Won, and Y. S. Kang, Macromol. Res., 15, 343 (2007) https://doi.org/10.1007/BF03218797
  12. S. Sunderrajan, B. D. Freeman, C. K. Hall, and I. Pinnau, J. Membr. Sci., 182, 1 (2001) https://doi.org/10.1016/S0376-7388(00)00569-X
  13. I. Pinnau and L. G. Toy, J. Membr. Sci., 184, 39 (2001) https://doi.org/10.1016/S0376-7388(00)00603-7
  14. T. C. Merkel, Z. He, A. Morisato, and I. Pinnau, Chem. Commun., 1596 (2003)
  15. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, Chem. Eur. J., 8, 650 (2002) https://doi.org/10.1002/1521-3765(20020201)8:3<650::AID-CHEM650>3.0.CO;2-X
  16. C. H. Jung, G. W. Kim, S. H. Han, and Y. M. Lee, Macromol. Res., 15, 565 (2007) https://doi.org/10.1007/BF03218832
  17. J. H. Kim, B. R. Min, and Y. S. Kang, Macromolecules, 39, 1297 (2006) https://doi.org/10.1021/ma052436a
  18. S. H. Kim, J. H. Ryu, H. Kim, B. S. Ahn, and Y. S. Kang, Chem. Commun., 1261 (2000)
  19. J. H. Kim, B. R. Min, K. B. Lee, J. Won, and Y. S. Kang, Chem. Commun., 2732 (2002)
  20. J. H. Kim, B. R. Min, J. Won, S. H. Joo, H. S. Kim, and Y. S. Kang, Macromolecules, 36, 6183 (2003) https://doi.org/10.1021/ma034314t
  21. J. H. Kim, D. H. Lee, J. Won, H. Jinnai, and Y. S. Kang, J. Membr. Sci., 281, 369 (2006) https://doi.org/10.1016/j.memsci.2006.04.002
  22. B. L. Papke, M. A. Ratner, and D. F. Shriver, J. Electrochem. Soc., 129, 1434 (1982) https://doi.org/10.1149/1.2124179
  23. S. Rosselli, A.-D. Ramminger, T. Wagner, B. Silier, S. Wiegand, W. Haubler, G.. Lieser, V. Scheumann, and S. Hoger, Angew, Chem. Int. Ed., 40, 3138 (2001)
  24. M. A. Hillmyer, P. M. Lipic, D. A. Hajduk, K. Almdal, and F. S. Bates, J. Am. Chem. Soc., 119, 2749 (1997) https://doi.org/10.1021/ja963622m
  25. S. Sakurai, S. Aida, S. Okamoto, T. Ono, K. Imaizumi, and S. Nomura, Macromolecules, 34, 3672 (2001) https://doi.org/10.1021/ma002123+
  26. H. S. Lee, A. Roy, A. S. Badami, and J. E. McGrath, Macromol. Res., 15, 160 (2007) https://doi.org/10.1007/BF03218768
  27. D. H. Kim and S. C. Kim, Macromol. Res., 16, 457 (2008) https://doi.org/10.1007/BF03218545
  28. C. K. Kim, J. Won, H. S. Kim, Y. S. Kang, H. G. Li, and C. K. Kim, J. Comp. Chem., 22, 827 (2001) https://doi.org/10.1002/jcc.1048