• Title/Summary/Keyword: Silt and Sand

Search Result 437, Processing Time 0.022 seconds

Influence of grain size ratio and silt content on the liquefaction potentials of silty sands

  • Sonmezer, Yetis Bulent;Kayabali, Kamil;Beyaz, Turgay;Fener, Mustafa
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.167-181
    • /
    • 2022
  • Soil liquefaction has been one of the most important concerns in geotechnical earthquake engineering in recent years, due to its damages to structures and its destructive effects. The cyclic liquefaction of silty sands, in particular, remains of great interest for both research and application. Although many factors are known that affect the liquefaction resistance of sands, the effect of fine grain content is perhaps one of the most studied and still controversial. In this study, 48 deformation-controlled cyclic simple shear tests were performed on BS and CS silt samples mixed with 5%, 15% and 30% by weight of Krk085, Krk042 and Krk025 sands in constant-volume conditions to determine the liquefaction potential of silty sands. The tests were carried out at 30% and 50% relative density and under 100 kPa effective stress. The results revealed that the liquefaction potential of silty sand increases with increasing average particle size ratio (D50sand / d50silt) of the mixture for a fixed silt content. Furthermore, for identical base sand, the liquefaction potentials of coarse grained sands increase with increasing silt content, while the respective potentials of fine grained sands generally decrease. However, this situation may vary depending on the silt grain structure and is affected by the nature of the fine grains. In addition, the variation of the void ratio interval was shown to provide a good intuition in determining the liquefaction potentials of silty sands, while the intergranular void ratio alone does not constitute a criterion for determining the liquefaction potentials of silty sands.

A Study on the Characteristics of Bearing Capacity of Soft Silt Soils Mixed with Sand (모래 섞인 연약한 실트지반의 지지력 특성에 관한 연구)

  • Lee Sang-Eun;Park Sang-Bum
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.31-43
    • /
    • 2006
  • As a result of calculating bearing capacity of soft silt soil(ML) and soft silt soils(ML', SM, SM') mixed with sand, all kinds of soils showed smaller values than existing expressions and when theoretical values are applied, considerable review is required. It was found that ultimate surcharge(bearing capacity) of soft silt soil was $q_{ult}=1.34C_u$ that of ML' soil in soft silt soils mixed with 3 kinds of sand $q_{ult}=1.40s$, that of SM soil $q_{ult}=1.73s$ and that of SM' soil $q_{ult}=2.72s$, Consequently, as content of sand having greater permeability than silt soil in creased, soil was stabilized gradually.

Deep neural network based seafloor sediment mapping using bathymetric features of MBES multifrequency

  • Khomsin;Mukhtasor;Suntoyo;Danar Guruh Pratomo
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.101-114
    • /
    • 2024
  • Seafloor sediment mapping is an essential research topic in shallow coastal waters, especially in port development, benthic habitat mapping, and underwater communications. The seafloor sediments can be interpreted by collecting sediment samples directly in the field using a grab sampler or corer. Another method is optical, especially using underwater cameras and videos. Both methods each have weaknesses in terms of area coverage (mechanic) and accurate positioning (optic). The latest technology used to overcome it is the acoustic method (echosounder) with Global Navigation Satellite System (GNSS) Real Time Kinematic (RTK) positioning. Therefore, in this study will propose the classification of seafloor sediments in coastal waters using acoustic method that is Multibeam Echosounder (MBES) multi-frequency with five frequency (200 kHz, 250 kHz, 300 kHz, 350 kHz, and 400 kHz). In this study, the deep neural network (DNN) used the bathymetric multi frequency, bathymetric difference inters frequencies, and bathymetric features from 5 (five) frequencies as input layer and 4 (four) sediment types in 74 (seventy-four) sample sediment as output layer to make a seafloor sediment map. Results of sediment mapping using the DNN method show an overall accuracy of 71.6% (significant) and a kappa coefficient of 0.59 (moderate). The distribution of seafloor sediment in the study area is mainly silt (41.6%), followed by clayey sand (36.6%), sandy silt (14.2%), and silty sand (7.5%).

A Study on the Liquefaction Strength of Silt Containing Sands (실트를 포함하는 모래질 흙의 액상화강도에 관한 연구)

  • Hwang, Dae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.243-252
    • /
    • 1993
  • Undrained cyclic simple shear tests and undrained cyclic triaxial tests were performed on silt containing sand in order to investigate the effects of silt contents on the liquefaction strength and shear characteristics of the sand. From the view that the difference of liquefaction strength for different content of silt stems from dilatancy characteristics of the sand, stress-dilatancy relation of the sand was obtained from drained triaxial test in which the mean stress was kept constant. Considerations on liquefaction behaviors were made by comparing the drained and undrained behaviors of sands during static shear test. It is concluded that ${\lambda}$-value of the stress-dilatancy relation will be closely related to the liquefaction strength.

  • PDF

Influence of trees and associated variables on soil organic carbon: a review

  • Devi, Angom Sarjubala
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.40-53
    • /
    • 2021
  • The level of soil organic carbon (SOC) fluctuates in different types of forest stands: this variation can be attributed to differences in tree species, and the variables associated with soil, climate, and topographical features. The present review evaluates the level of SOC in different types of forest stands to determine the factors responsible for the observed variation. Mixed stands have the highest amount of SOC, while coniferous (both deciduous-coniferous and evergreen-coniferous) stands have greater SOC concentrations than deciduous (broadleaved) and evergreen (broadleaved) tree stands. There was a significant negative correlation between SOC and mean annual temperature (MAT) and sand composition, in all types of forest stands. In contrast, the silt fraction has a positive correlation with SOC, in all types of tree stands. Variation in SOC under different types of forest stands in different landscapes can be due to differences in MAT, and the sand and silt fraction of soil apart from the type of forests.

Model tests on the bearing capacity of pervious concrete piles in silt and sand

  • Han Xia;Guangyin Du;Jun Cai;Changshen Sun
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • The settlement, bearing capacity, axial force, and skin friction responses of pervious and impervious concrete piles in silty and sandy underlying layer foundations and of pervious concrete piles in model tests were determined. The results showed that pervious concrete piles can exhibit high strengths, provide drainage paths and thus reduce foundation consolidation time. Increasing the soil layer thickness and pile length could eliminate the bearing capacity difference of pervious piles in a foundation with a silty underlying layer. The pervious concrete piles in the sandy underlying layer were more efficacious than those in the silty underlying layer because the sandy underlying layer can provide more bearing capacity than the silty underlying layer. The results indicated that the performances of the pervious concrete piles in the sand and silt foundations differed. The pervious concrete piles functioned as floating piles in the underlying layer with a lower bearing capacity and as end-bearing piles in the underlying layer with a higher bearing capacity.

EFFECT OF SILT AND SALINITY ON THE MORTALITY OF MERETRIX LUSORIA $(R\ddot{O}DING)$ (이질과 염분이 백합의 폐사에 미치는 영향)

  • CHANG Sun-duck;CHIN Pyung;SUNG Byung-oun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.1
    • /
    • pp.69-73
    • /
    • 1976
  • Mortality of clam, Meretrix lusoria was measured during the experimental cultures in different sediments compositions and in different salinities of sea water. Experimental groups maintained in silt and clay showed significant mortality, while those treated in sand and in sand-silt showed little mortality. In the groups cultured in silt and clay, young groups of approximately 2.5cm in shell length were subjected to early and high mortality (approximately eighty-five per cent in foully-one days). The larger the shell size was, the later and the lower the mortality occurred. In different salinity, the groups maintained in silt and clay showed different mortalities. It is observed that the survival rate of the shell in the sea water of low salinity was higher than that in the high salinity water. Oxygen consumption of isolated gill tissue showed a little difference between the groups maintained in silt and clay and those in sand (the control-group). Consequently, it may be stated that the mortality results mainly from the deposition of silt and clay, although the survival rate of Meretrix lusoria depends also on water temperature, salinity, dissolved oxygen, body size ana other factors.

  • PDF

Unfrozen Water Content and Unconfined Compressive Strength of Frozen Soils according to Degree of Saturations and Silt Fractions (포화도와 실트 함량에 따른 동결토의 부동 수분량 및 일축압축강도 특성)

  • Kim, Sang Yeob;Hong, Won-Taek;Hong, Seung Seo;Baek, Yong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.59-67
    • /
    • 2016
  • The strength of frozen soils is affected by size and shape of particles, and the amount of ice and unfrozen water. The objective of this study is to characterize the unfrozen water content and the unconfined compressive strength of the frozen soils according to the degree of saturations and silt fractions. The specimens are mixtures of sand, silt, and water. The silt fractions (SF), which are the ratio of the silt weight ($W_{silt}$) to the sand weight ($W_{sand}$), are 10% and 30%. In addition, the degrees of the saturation are 5%, 10%, 15%, and 20%. The specimens are frozen under the temperature of $-10^{\circ}C$ conditions. The uniaxial compression tests are conducted for 24 hours, 48 hours, and 72 hours after freezing to determine proper freezing time. The freezing time of 24 hours is chosen because the unconfined compressive strengths of specimens after 24 hours freezing times are similar to each other. Furthermore, the unfrozen water content is monitored during freezing using the TDR system. The unfrozen water content increases with the increase of the silt fraction and degree of saturation. The unconfined compressive strength of the frozen soils exponentially increases with increasing the degree of saturation. This study shows that the amount of ice has more influence on the strength of the frozen soils than the amount of unfrozen water.

Effect of Particle Size of Sediment on Adsorption of Fluoride (하천 퇴적물의 입자크기에 따른 불소의 흡착 특성)

  • Kim, Chae-Lim;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.289-295
    • /
    • 2016
  • The purpose of this study is to find out the effect of particle size of sediment on adsorption of fluoride. Particle size is classified as sand, silt and clay. Adsorption equilibrium time, adsorption isotherms and the effect of pH were investigated through batch tests. The $pH_{pzc}$ of sand, silt, clay was respectively 6, 8, 4.5 and AEC (anion exchange capacity) was highest in silt, respectively 0.0095, 0.0224, $0.014meq\;g^{-1}$. Adsorption of fluoride on the sediment was in equilibrium within 300 minutes from all particle size. The experimental data of isotherms at various pH were well explained by Freundlich equation. As the experimental results of the effect of pH, the adsorption efficiency of sand and silt were reduced after the $pH_{pzc}$. However, the adsorption efficiency of clay was maintained after the $pH_{pzc}$, and decreased rapidly higher than pH 12.

Reclamation and Soil Improvement on Ultra Soft Soil (I) - Reclamation (초연약지반의 매립 및 지반개량 사례 연구 (I) - 매립)

  • Na, Yung-Mook;Hong, Eui;Han, Jung-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • The "Silt Pond" is 180 hectares in size and contained ultra soft slurry-like soil varying between 3 to 20 meters in thickness. Reclamation works in the Silt Pond commenced in the mid of 1990s. A considerable amount of subsurface investigation inclusive of sampling, field vane and density logging tests were carried out prior to the reclamation of the Silt Pond. Since material in the Silt Pond is extremely soft, filling was done by spreading sand with high water content in thin and equal thickness lifts, allowing the stability of the slurry-like foundation. Despite the extreme care taken, failures occurred during the sand spreading phase. A large piece of high strength geotextile measuring $900m{\times}700m$ was placed to strengthen the slurry like soil foundation at locations where the ultra-soft soil was found to be exposed. Following the remedial works, the Silt Pond was again reclaimed by sand spreading up to +4.0m CD. The success of the reclamation was confirmed by marine CPT profiling.

  • PDF