• Title/Summary/Keyword: Silicone rubber

Search Result 371, Processing Time 0.023 seconds

Treatment and Characterization of Polyethylene Terephthalate Fibers with Silicone Rubber Adhesive for Heat-Resistant Adhesion (실리콘 고무와 내열접착 향상을 위한 Polyethylene Terephthalate 섬유 접착층의 제조 및 특성)

  • Kim, Jihyo;Lee, Sangoh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.107-117
    • /
    • 2019
  • In case of pure rubber materials, the initial quality of the rubber materials would be excellent, however, the durability against external impact might be poor. In order to overcome the relatively low durability, textile cord could be employed with silicone rubber. We have studied the improvement of heat-resistant adhesion properties of silicone adhesives between silicone rubber and PET fibers by applying various conditions including dip solution recipe. The silicone rubber used was a platinum catalyst curing type and platinum catalyst type silicone adhesive was used as an adhesive to obtain an optimum adhesive force. Furthermore, the bonding mechanism between silicone and PET fiber was established.

Preparation of Silicone Rubber Membrane and its Porosity (Silicone Rubber Membrane의 제조 및 기공특성)

  • Lee, Seung-Bum;Kim, Hyung-Jin;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.185-194
    • /
    • 1995
  • Membrane process has been employed to separate a specific substance from gas or liquid mixture, and treat wastewater. This is due to the fact that the substance of mixture can be permeated and separated selectively by membrane. Since Initial equipment and operation costs are not expensive, membrane process has been adopted in various fields such as petroleum Industry, chemistry, polymer, electronics, foods, biochemical industry and wastewater treatment. In this study, $CaCO_3$ particles impregnated in silicone rubber network were extracted by using supercritical carbon dioxide and pore distribution of silicone $rubber-CaCO_3$ was investigated with varying amount of extract. Silicone rubber has excellent mechanical properties such as heat-resistance, cold-resistance etc. and $CaCO_3$ has microporous structure. It is possible to make silicone $rubber-CaCO_3$ composite sheets via work-intensive kneading processes. In so doing $CaCO_3$ particles become distributed and impregnated in silicone rubber network. Supercritical carbon dioxide diffuse through composite sample, then sample is swollen. $CaCO_3$ in silicone rubber network Is dissolved in supercritical carbon dioxide, and its sites become pores. Pore distribution, pore shape and surface area are observed by SEM(scanning electron microscope) micrograph and BET surface area analyzer examination respectively. Pore characteristics of membrane suggest the possibilities that the membrane can be used for process of mixture separation and wastewater treatment.

  • PDF

Adhesion Characteristics of Semiconductive and Insulating Silicone Rubber by Oxygen Plasma Treatment (산소 플라즈마 처리에 의한 반도전-절연 실리콘 고무의 접착 특성)

  • Lee Ki- Taek;Huh Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.153-157
    • /
    • 2006
  • In this work, the effects of plasma treatment on surface properties of semiconductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy (XPS) and contact angles, The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths, The results of the chemical analysis showed that C-H bonds were broken due to plasma discharge and Silica-like bonds(SiOx, x=3${\~}$4) increased, It is thought that semiconductive silicone rubber surfaces treated with plasma discharge led to an increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. However, the oxygen plama for 20 minute produces a damaged oxidized semiconductive silicone rubber layer, which acts as a weak layer producing a decrease in T-peel strength, These results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semiconductive silicone rubber.

Adsorption Property of Silicone Rubber Sticking Chuck for OLED Glass Substrate

  • Kim, Jin-Hee;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.55-61
    • /
    • 2015
  • Manufacturing process of OLED contains adsorption-desorption process of glass substrate. There are several adsorption methods of glass substrate such as atmospheric pressure, vacuum and electrostatic adsorption. However, these methods are very complex to connect system. Therefore, the adsorption method using silicone rubber based sticking chuck was proposed in this study. Three types of silicone rubbers having 0, 19.3 and 32.2 wt% of fluorine were used and their mechanical properties, surface energies and adsorption properties were examined. According to the results ${\sigma}_{300}$ and hardness increased with increasing fluorine contents, but elongation was decreased. Also, fluorosilicone rubber containing 32.2 wt% of fluorine showed the lowest surface tension, among three types of rubber and resulted in the highest initial tack with glass substrate. After the adsorption-desorption test of 300,000 cycles was performed, the adsorption force of S-1 (silicone rubber) decreased largely from 2.34 to 0.73 MPa. However, the S-3 (fluorosilicone rubber having 32.2 wt%. of fluorine) decreased only from 3.15 to 2.24 MPa. From this study, we obtained the valuable equations related to long term durability of silicone based sticking chuck. Finally the transfer of silicone rubber to glass substrate with the adsorption-desorption process was not occurred and this phenomenon was examined by UV-Visible spectroscopy.

The surface discharge performance of silicone rubber in the Salt fog test (Salt fog 시험에서 silicone rubber에서 발생하는 방전 전류의 특성)

  • 강성화;박영국;이광우;김완수;이용회
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.565-569
    • /
    • 1999
  • In these days, the silicone insulators have been increasingly studied and applied for outdoor insulators because it has superior characteristics than porcelain and glass insulators, which have been used for outdoor insulators. First of all, The excellent performance of the silicone rubber in polluted and wet conditions is attributed to the ability of the material to maintain the hydrophobicity of the surface in the presence of severe contamination and wet conditions. This is because of the presence of low molecular weight mobile fluid in the silicone rubber which diffuses to the surface and to above the contamination layer. But, the leakage current and some surface discharge occurs on surface of the composite polymeric insulation materials when the insulator is used for a long time with severe contaminative condition and it can lead the contamination flashover. So the leakage current and the discharge current are important to estimate the condition of the silicone rubber surface. In this paper, the average leakage current, the relation of surface discharge current and phase angle were study to investigate electrical conduction of silicone rubber surface with the salt fog condition.

  • PDF

The Effects of Environmental Factors on Degradation and Hydrophobicity Recovery Characteristics in RTV Silicone Rubber (RTV 실리콘 고무의 열화 및 발수성 회복 특성에 미치는 환경인자의 영향)

  • Heo, Chang-Su;Yeon, Bok-Hui;Jo, Hyeon-Uk;Hwang, Myeong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.462-468
    • /
    • 1999
  • Room temperature vulcanizing (RTV) silicone rubber has been widely used to coat porcelain insulators to render water repellency to prevent formation of water film on the surface and thus to suppress the leakage current and consequently flashover. However, the electrical property and the hydrophobicity of RTV silicone rubber coating under outdoor condition may be influenced by many environmental factors. In this studyvarious treatments, such as salt-fog, salt water immerging and UV irradiation were applied to the samples to investigate the change of the electrical property and hydrophobicity. As a result the leakage current increased and contact angle decreased asthe degradation time is longer. But the degraded RTV silicone rubber has recovered its hydrophobicity during the drying time in ambient condition because LMW(Low Molecular Weight) silicone fluid diffused from the bulk to the surface.

  • PDF

The Behavior of Low Molecular Weight Silicone Fluids in Silicone Rubber (자외선 조사에 따른 실리콘 교무에 존재하는 가동성 저분자량 성분의 거동)

  • Hong, Joo-Il;Lee, Ki-Taek;Seo, Yu-Jin;Hwang, Sun-Mook;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.312-315
    • /
    • 2004
  • In this paper we investigated the behavior of low molecular weight silicone fluids in silicone rubber by W treatment with solvent-extraction and GPC. It was shown that LMW quantity which was extracted by solvent-extraction was decreased in UV treatment time. $200{\sim}450\;g/mol$ distribution of LMW silicone fluid was contributed to recovery. It was similar to result from corona discharge. Morphological analysis was investigated by scanning electron microscope(SEM) and X-ray diffraction (XRD). The behavior of LMW silicone fluids in silicone rubber which was contributed to recovery was discussed.

  • PDF

The change of surface degradation properties of silicone rubber for salt fog (염무-열 반복 열화에 따른 실리콘 고무의 표면열화특성변화)

  • Oh, Tae-Seung;Lee, Chung;Park, Soo-Gil;Ryu, Boo-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.886-889
    • /
    • 2001
  • Silicone rubber is being used for the housing material of outdoor high voltage insulators such as composite insulator, bushing, surge arrestor and cable terminator because of good tracking and erosion resistance, good hydrophobicity and recovery of hydrophobicity and chemical stability. But, the leakge current occurs on surface of the composite polymeric insulation materials when the insulator is used for a long time with severe contaminative condition and it can lead the contamination flashover. So the leakage current is important to estimate the condition of the silicone rubber surface. In this paper, aging characteristics of silicone rubber used for outdoor insulation have been hydrophobicity of silicone rubber in salt fog chamber with average leakage current monitoring for observing the transformation of surface degradation properties of silicone rubber with different ATH(alumina trihydrate, A1$_2$O$_3$$.$3H$_2$O) filler contents. The experimental results show that a higher peak leakage current and to raise a long time for tracking with increasing amount of ATH by the salt fog and heat recycle ageing.

  • PDF

Electrical and Mechanical Properties of Silicone Rubber for High Voltage Insulation (고압절연용 실리콘고무의 전기특성 및 물성에 관한 연구)

  • Lee, J.H.;Ji, W.Y.
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.115-123
    • /
    • 2002
  • This study was carried out to investigate the influences or the vinyl content of polydimethylsiloxane(PDMS) and type of silica on the electrical and mechanical properties of silicone rubber far high voltage insulation. When the content of vinyl group was increased, cross-linking density and hardness were increased, and tensile strength, volume resistivity and tracking resistance were improved. The mechanical and electrical properties of silicone rubber reinforced with fumed silica were higher than those of silicone rubber reinforced with precipitated silica. It was found that the electrical and mechanical properties of silicone rubber were influenced greatly by the water contents of silica.

Enhancement of Signal Transmission Characteristics Using Structural Changes in Silicone Rubber Socket (실리콘 러버 소켓의 구조 변경을 통한 신호 전달 특성 향상)

  • Seona Kim;Moonjung Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.104-109
    • /
    • 2024
  • In this paper, we propose structures of a socket that can improve signal transmission characteristics compared to the existing silicone rubber socket. A coaxial rubber socket was proposed to improve signal distortion due to electromagnetic interference between signal lines. And an air gap rubber socket was proposed to improve the degradation of reflection characteristics due to high dielectric constant. Using a 3D electromagnetic field simulator, the S-parameter and crosstalk of the three sockets were compared and the signal transmission characteristics were analyzed. In both coaxial rubber socket and the air gap rubber socket, S-parameter and crosstalk were improved compared to the silicone rubber socket. Among them, the air gap rubber socket was the best for S-parameter, and the coaxial rubber socket was the best for crosstalk.

  • PDF