• Title/Summary/Keyword: Silicon-nitride thin film

Search Result 117, Processing Time 0.028 seconds

Bottom Gate Microcrystalline Silicon TFT Fabricated on Plasma Treated Silicon Nitride

  • Huang, Jung-Jie;Chen, Yung-Pei;Lin, Hung-Chien;Yao, Hsiao-Chiang;Lee, Cheng-Chung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.218-221
    • /
    • 2008
  • Bottom-gate microcrystalline silicon thin film transistors (${\mu}c$-Si:H TFTs) were fabricated on glass and transparent polyimide substrates by conventional 13.56 MHz RF plasma enhanced chemical vapor deposition at $200^{\circ}C$. The deposition rate of the ${\mu}c$-Si:H film is 24 nm/min and the amorphous incubation layer near the ${\mu}c$-Si:H/silicon nitride interface is unobvious. The threshold voltage of ${\mu}c$-Si:H TFTs can be improved by $H_2$ or $NH_3$ plasma pretreatment silicon nitride film.

  • PDF

A Study on Application of Ag Nano-Dots and Silicon Nitride Film for Improving the Light Trapping in Mono-crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 광 포획 개선을 위한 Ag Nano-Dots 및 질화막 적용 연구)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.12-17
    • /
    • 2019
  • In this study, the Ag nano-dots structure and silicon nitride film were applied to the textured wafer surface to improve the light trapping effect of mono-crystalline silicon solar cell. Ag nano-dots structure was formed by performing a heat treatment for 30 minutes at 650℃ after the deposition of 10nm Ag thin film. Ag thin film deposition was performed using a thermal evaporator. The silicon nitride film was deposited by a Hot-wire chemical vapor deposition. The effect of light trapping was compared and analyzed through light reflectance measurements. Experimental results showed that the reflectivity increased by 0.5 ~ 1% under all nitride thickness conditions when Ag nano-dots structure was formed before nitride film deposition. In addition, when the Ag nano-dots structure is formed after deposition of the silicon nitride film, the reflectance is increased in the nitride film condition of 70 nm or more. When the HF treatment was performed for 60 seconds to improve the Ag nano-dot structure, the overall reflectance was improved, and the reflectance was 0.15% lower than that of the silicon nitride film-only sample at 90 nm silicon nitride film condition.

Characterization of Piezoelectric Microspeaker Fabricated with C-axis Oriented ZnO Thin Film (C-축 배향된 ZnO 박막을 이용하여 제작한 압전형 마이크로 스피커의 특성 평가)

  • Yi Seung-Hwan;Seo Kyong-Won;Ryu Kum-Pyo;Kweon Soon-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.531-537
    • /
    • 2006
  • A micromachined piezoelectric microspeaker was fabricated with a highly c-axis oriented ZnO thin film on a silicon-nitride film having compressive residual stress. When it was measured 3 mm away from the microspeaker in open field, the largest sound pressure level produced by the fabricated microspeaker was about 91 dB at around 2.9 kHz for the applied voltage of $6\;V_{peak-to-peak}$. The key technologies to these successful results were as follows: (1) the usage of a wrinkled diaphragm caused by the high compressive residual stress of silicon-nitride thin film, (2) the usage of the highly c-axis oriented ZnO thin film.

A study on refractive index of silicon nitride thin film according to the variable constant temperature and humidity reliable research (굴절률 가변에 따른 silicon nitride 박막의 항온/항습 신뢰성 연구)

  • Song, Kyuwan;Jang, Juyeun;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.56.1-56.1
    • /
    • 2010
  • 결정질 실리콘 태양전지의 표면 ARC(Anti-reflection Coating)layer는 반사도를 줄여 광 흡수율을 증가시키고, passivation 효과를 통하여 표면 재결합을 감소 시켜 태양전지의 효율을 높이는 중요한 역할을 한다. Silicon nitride 박막은 외부 stress 요인에 대해 안정성을 담보할 수 있어야한다. 따라서, 본 연구에서는 굴절률 가변에 따른 silicon nitride 박막을 PECVD를 이용하여 증착하고, 항온/항습 stability test를 통해 박막의 안정성을 확인하였다. Silicon nitride 증착을 위해 PECVD를 이용하였고, 공정압력 0.8Torr, 증착온도 $450^{\circ}C$, 증착파워 300W에서 실험을 진행하였다 박막의 굴절률은 1.9~2.3의 범위로 가변하였다. 항온/항습에 대한 신뢰성을 test 하기 위하여 5시간동안의 test를 1cycle로 하여 20회 동안 실험을 실시하였다. 증착된 silicon nitride 박막의 lifetime은 firing 이후 57.8us로 가장 높았으며, 항온/항습 test 이후에도 유사한 경향을 확인 할 수 있었다. 또한, 100h 동안의 항온/항습 test 결과 silicon nitride 박막의 lifetme 감소는 8.5%에 불과했다. 본 연구를 통하여 온도와 습도의 변화에 따른 결정질 실리콘 태양전지의 SiNx 박막의 증착 공정 조건에 대한 신뢰성을 확인 할 수 있었다.

  • PDF

On the silicon nitride film formation and characteristic study by chemical vapor deposition method using electron cyclotron resonance plasma (전자 싸이클로트론 공명 플라즈마 화학 증착법에 의한 실리콘 질화막 형성 및 특성 연구)

  • 김용진;김정형;송선규;장홍영
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.6
    • /
    • pp.287-292
    • /
    • 1992
  • Silicon nitride thin film (SiNx) was deposited onto the 3inch silicon wafer using an electron cyclotron resonance (ECR) plasma apparatus. The thin films which were deposited by changing the SiH4N2 gas flow rate ratio at 1.5mTorr without substrate heating were analyzed through the x-ray photo spectroscopy (XPS) and ellipsometer measurements, etc. Silicon nitride thin films prepared by the electron cyclotron resonance plasma chemical vapor deposition method at low substrate temperature (<10$0^{\circ}C$) exhibited excellent physical and electrical properties. The very uniform and good quality silicon nitride thin films were obtained. The characteristics of electron cyclotron resonance plasma were inferred from the analyzed results of the deposited films.

  • PDF

Deposition and Electrical Properties of Silicon Nitride Thin Film MIM Capacitors for MMIC Applications (MMIC에 적용되는 MIM 커패시터의 실리콘 질화막 증착과 전기적 특성)

  • 성호근;소순진;박춘배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.283-288
    • /
    • 2004
  • We have fabricated MIM capacitors for MMIC applications, with capacitances as high as 600pF/$\textrm{mm}^2$ and excellent electrical properties of the insulator layer. Silicon nitride thin film is the desirable material for MMIC capacitor fabrication. Standard MIM capacitance in MMIC is 300pF/$\textrm{mm}^2$ with an insulator layer thickness of more than 2000$\AA$. However, capacitors with thin insulator layers have breakdown voltages as low as 20V. We have deposited insulator layers by PECVD in our MIM structure with an air bridge between the top metal and the contact pad. The PECVD process was optimized for fabricating the desired capacitors to be used in MMIC. Silicon nitride(Si$_{x}$N$_{y}$) thin films of about 1000$\AA$ thick show capacitances of about 600pF/$\textrm{mm}^2$, and breakdown voltages above 70V at 100nA.A.A.

Influence of Nitrogen Plasma Treatment on Low Temperature Deposited Silicon Nitride Thin Film for Flexible Display (플렉서블 디스플레이 적용을 위한 저온 실리콘 질화막의 N2 플라즈마 처리 영향)

  • Kim, Seongjong;Kim, Moonkeun;Kwon, Kwang-Ho;Kim, Jong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • Silicon nitride thin film deposited with Plasma Enhanced Chemical Vapor Deposition was treated by a nitrogen plasma generated by Inductively Coupled Plasma at room temperature. The treatment was investigated by Fourier Transform Infrared Spectroscopy and Atomic Force Microscopy on the surface at various RF source powers at two RF bias powers. The amount of hydrogen was reduced and the surface roughness of the films was decreased remarkably after the plasma treatment. In order to understand the causes, we analyzed the plasma diagnostics by Optical Emission Spectroscopy and Double Langmuir Probe. Based on these analysis results, we show that the nitrogen plasma treatment was effective in the improving of the properties silicon nitride thin film for flexible display.

Fabrication of low-stress silicon nitride film for application to biochemical sensor array

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.357-361
    • /
    • 2005
  • Low-stress silicon nitride (LSN) thin films with embedded metal line have been developed as free standing structures to keep microspheres in proper locations and localized heat source for application to a chip-based sensor array for the simultaneous and near-real-time detection of multiple analytes in solution. The LSN film has been utilized as a structural material as well as a hard mask layer for wet anisotropic etching of silicon. The LSN was deposited by LPCVD (Low Pressure Chemical Vapor Deposition) process by varing the ratio of source gas flows. The residual stress of the LSN film was measured by laser curvature method. The residual stress of the LSN film is 6 times lower than that of the stoichiometric silicon nitride film. The test results showed that not only the LSN film but also the stack of LSN layers with embedded metal line could stand without notable deflection.

Thermal Property Evaluation of a Silicon Nitride Thin-Film Using the Dual-Wavelength Pump-Probe Technique (2파장 펌프-프로브 기법을 이용한 질화규소 박막의 열물성 평가)

  • Kim, Yun Young
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.547-552
    • /
    • 2019
  • In the present study, the thermal conductivity of a silicon nitride($Si_3N_4$) thin-film is evaluated using the dual-wavelength pump-probe technique. A 100-nm thick $Si_3N_4$ film is deposited on a silicon (100) wafer using the radio frequency plasma enhanced chemical vapor deposition technique and film structural characteristics are observed using the X-ray reflectivity technique. The film's thermal conductivity is measured using a pump-probe setup powered by a femtosecond laser system of which pump-beam wavelength is frequency-doubled using a beta barium borate crystal. A multilayer transient heat conduction equation is numerically solved to quantify the film property. A finite difference method based on the Crank-Nicolson scheme is employed for the computation so that the experimental data can be curve-fitted. Results show that the thermal conductivity value of the film is lower than that of its bulk status by an order of magnitude. This investigation offers an effective way to evaluate thermophysical properties of nanoscale ceramic and dielectric materials with high temporal and spatial resolutions.

Silicon Nitride Thin Film Deposition Using ECR Plasma (ECR 플라즈마를 이용한 실리콘화박막증착)

  • 송선규;장홍영
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.4
    • /
    • pp.218-224
    • /
    • 1990
  • Silicon nitride thin(SiNx) is deposited onto 3 inch silicon wafor using ECR plasma apparatus. For the two different plasma extraction windows size, the thin films which were deposited by changing the SiH4/N2 gas fole at at 1.5mTorr without substrate heating are analyzed through the XPS and wlliposometer measurements. The very uniform and good quality silicon nitride thin film were obtained with the analyzed results of the deposited films, and particularly, ion temperature perpendicular to the magnetic filed was nearly same as the neutral gas temperature. The large amount of plasma loss in the transport process following magnetic field lines could be seen from the plasma emission intensity measurements.

  • PDF