• Title/Summary/Keyword: Silicon-Based

Search Result 1,458, Processing Time 0.031 seconds

Optimization of 1.2 kV 4H-SiC MOSFETs with Vertical Variation Doping Structure (Vertical Variation Doping 구조를 도입한 1.2 kV 4H-SiC MOSFET 최적화)

  • Ye-Jin Kim;Seung-Hyun Park;Tae-Hee Lee;Ji-Soo Choi;Se-Rim Park;Geon-Hee Lee;Jong-Min Oh;Weon Ho Shin;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.332-336
    • /
    • 2024
  • High-energy bandgap material silicon carbide (SiC) is gaining attention as a next-generation power semiconductor material, and in particular, SiC-based MOSFETs are developed as representative power semiconductors to increase the breakdown voltage (BV) of conventional planar structures. However, as the size of SJ (Super Junction) MOSFET devices decreases and the depth of pillars increases, it becomes challenging to uniformly form the doping concentration of pillars. Therefore, a structure with different doping concentrations segmented within the pillar is being researched. Using Silvaco TCAD simulation, a SJ VVD (vertical variation doping profile) MOSFET with three different doping concentrations in the pillar was studied. Simulations were conducted for the width of the pillar and the doping concentration of N-epi, revealing that as the width of the pillar increases, the depletion region widens, leading to an increase in on-specific resistance (Ron,sp) and breakdown voltage (BV). Additionally, as the doping concentration of N-epi increases, the number of carriers increases, and the depletion region narrows, resulting in a decrease in Ron,sp and BV. The optimized SJ VVD MOSFET exhibits a very high figure of merit (BFOM) of 13,400 KW/cm2, indicating excellent performance characteristics and suggesting its potential as a next-generation highperformance power device suitable for practical applications.

Investigation of physicochemical properties, sustainability and environmental evaluation of metakaolin- granulated blast furnace slag geopolymer concrete

  • Anas Driouich;Safae El Alami El Hassani;Zakia Zmirli;Slimane El Harfaoui;Nadhim Hamah Sor;Ayoub Aziz;Jong Wan Hu;Haytham F. Isleem;Hadee Mohammed Najm;Hassan Chaair
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.489-501
    • /
    • 2024
  • Geopolymers are part of a class of materials characterized by properties combining polymers, ceramics, and cement. These include exceptionally high thermal and chemical stability, excellent mechanical strength and durability in aggressive environments. This work deals with the synthesis, characterization, and sustainability evaluation of GPGBFS-MK geopolymers by alkaline activation of a granulated blast furnace slag-metakaolin mixture. In the first step, elemental and oxide analyses by XRF and EDS showed that the main constituents of GPGBFS-MK geopolymers are silicon, sodium, and aluminium oxides. The structural analyses by XRD and FTIR confirmed that the geopolymerization for GPGBFS-MK geopolymers did occur, accompanied by the formation of disordered networks from the blends and a modification to the microstructure by the geopolymerization process. Similarly, the microstructural study made by SEM showed that the GPGBFS-MK geopolymers are constituted by aluminosilicates in the form of dense clusters on which are adsorbed particles of unreacted GBFS in the form of spheroids and white residues of the alkaline activating solution. In addition, the study of the sustainability evaluation of GPGBFS-MK geopolymers showed that the water absorption of geopolymeric materials is lower than that of OPC cement. As for the elevated temperature resistance, the analyses indicated an excellent elevated temperature resistance of GPGBFS-MK. In the same way, the study of the resistance to chemical aggressions showed that the GPGBFS-MK geopolymeric materials are unattackable, contrary to the OPC cement-based materials which are strongly altered.

Novel Modeling Approach to Analyze Threshold Voltage Variability in Short Gate-Length (15-22 nm) Nanowire FETs with Various Channel Diameters

  • Seunghwan Lee;Jun-Sik Yoon;Junjong Lee;Jinsu Jeong;Hyeok Yun;Jaewan Lim;Sanguk Lee;Rock-Hyun Baek
    • Nanomaterials
    • /
    • v.12 no.10
    • /
    • pp.1721-1729
    • /
    • 2022
  • In this study, threshold voltage (Vth) variability was investigated in silicon nanowire field-effect transistors (SNWFETs) with short gate-lengths of 15-22 nm and various channel diameters (DNW) of 7, 9, and 12 nm. Linear slope and nonzero y-intercept were observed in a Pelgrom plot of the standard deviation of Vth (σVth), which originated from random and process variations. Interestingly, the slope and y-intercept differed for each DNW, and σVth was the smallest at a median DNW of 9 nm. To analyze the observed DNW tendency of σVth, a novel modeling approach based on the error propagation law was proposed. The contribution of gate-metal work function, channel dopant concentration (Nch), and DNW variations (WFV, ΔNch, and ΔDNW) to σVth were evaluated by directly fitting the developed model to measured σVth. As a result, WFV induced by metal gate granularity increased as channel area increases, and the slope of WFV in Pelgrom plot is similar to that of σVth. As DNW decreased, SNWFETs became robust to ΔNch but vulnerable to ΔDNW. Consequently, the contribution of ΔDNW, WFV, and ΔNch is dominant at DNW of 7 nm, 9 nm, and 12, respectively. The proposed model enables the quantifying of the contribution of various variation sources of Vth variation, and it is applicable to all SNWFETs with various LG and DNW.

Secondary Battery Electrode Material for Next Generation Mobility Power Storage (차세대 모빌리티 전력 저장 이차전지 핵심소재)

  • Yu-Jin Song;Seo-Hyun Kim;Se-Jin Kim;Jae Hoon Kim
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.159-174
    • /
    • 2024
  • The rapid increase in energy consumption based on fossil fuels is accelerating global warming. In particular, the road transportation sector has high carbon dioxide emissions, so transitioning towards electric vehicles is recommended. Thus, the importance of secondary batteries is increasing. Secondary batteries are reversible batteries that use energy and can be reused through a charging and discharging process. Currently, lithium-ion batteries are widely used. Secondary batteries place importance on six major factors: energy, output, lifespan, environmental friendliness, cost, and stability. Research is actively being conducted to satisfy all six factors by understanding the material characteristics of each component of the battery. As it is difficult to move away from lithium as a cathode material, researchers are investigating higher performance materials that mix materials such as cobalt, nickel, manganese, and aluminum with lithium and use graphite, silicon, and lithium metal to increase capacity. In the case of electrolytes, liquid electrolytes are still mainly used. However, solid electrolytes are being studied due to their stability, but additional research must be conducted to satisfy the energy and output factors. This review paper aims to provide an understanding of secondary batteries through an overview of secondary batteries, the materials and characteristics of their components, their technological trends, and their associated companies.

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

Comparison of using CBCT with CT Simulator for Radiation dose of Treatment Planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Kim, Dae-Young;Choi, Ji-Won;Cho, Jung-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.742-749
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

A Study on Dosimetry for Small Fields of Photon Beam (광자선 소조사면의 선량 측정에 관한 연구)

  • 강위생;하성환;박찬일
    • Progress in Medical Physics
    • /
    • v.5 no.2
    • /
    • pp.57-68
    • /
    • 1994
  • Purpose : The purposes are to discuss the reason to measure dose distributions of circular small fields for stereotactic radiosurgery based on medical linear accelerator, finding of beam axis, and considering points on dosimetry using home-made small water phantom, and to report dosimetric results of 10MV X-ray of Clinac-18, like as TMR, OAR and field size factor required for treatment planning. Method and material : Dose-response linearity and dose-rate dependence of a p-type silicon (Si) diode, of which size and sensitivity are proper for small field dosimetry, are determined by means of measurement. Two water tanks being same in shape and size, with internal dimension, 30${\times}$30${\times}$30cm$^3$ were home-made with acrylic plates and connected by a hose. One of them a used as a water phantom and the other as a device to control depth of the Si detector in the phantom. Two orthogonal dose profiles at a specified depth were used to determine beam axis. TMR's of 4 circular cones, 10, 20, 30 and 40mm at 100cm SAD were measured, and OAR's of them were measured at 4 depths, d$\sub$max/, 6, 10, 15cm at 100cm SCD. Field size factor (FSF) defined by the ratio of D$\sub$max/ of a given cone at SAD to MU were also measured. Result : The dose-response linearity of the Si detector was almost perfect. Its sensitivity decreased with increasing dose rate but stable for high dose rate like as 100MU/min and higher even though dose out of field could be a little bit overestimated because of low dose rate. Method determining beam axis by two orthogonal profiles was simple and gave 0.05mm accuracy. Adjustment of depth of the detector in a water phantom by insertion and remove of some acryl pates under an auxiliary water tank was also simple and accurate. TMR, OAR and FSF measured by Si detector were sufficiently accurate for application to treatment planning of linac-based stereotactic radiosurgery. OAR in field was nearly independent of depth. Conclusion : The Si detector was appropriate for dosimetry of small circular fields for linac-based stereotactic radiosurgery. The beam axis could be determined by two orthogonal dose profiles. The adjustment of depth of the detector in water was possible by addition or removal of some acryl plates under the auxiliary water tank and simple. TMR, OAR and FSF were accurate enough to apply to stereotactic radiosurgery planning. OAR data at one depth are sufficient for radiosurgery planning.

  • PDF

Comparison of using CBCT with CT simulator for radiation dose of treatment planning (CBCT와 Simulation CT를 이용한 치료계획의 선량비교)

  • Cho, jung-keun;Kim, dae-young;Han, tae-jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.1159-1166
    • /
    • 2009
  • The use of cone-beam computed tomography(CBCT) has been proposed for guiding the delivery of radiation therapy. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography(CT) has been integrated with a medical linear accelerator. A standard clinical linear accelerator, operating in arc therapy mode, and an amorphous-silicon (a-Si) with an on-board electronic portal imager can be used to treat palliative patient and verify the patient's position prior to treatment. On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. In this study, the accuracy of Hounsfield Units of CBCT images as well as the accuracy of dose calculations based on CBCT images of a phantom and compared the results with those of using CT simulator images. Phantom and patient studies were carried out to evaluate the achievable accuracy in using CBCT and CT stimulator for dose calculation. Relative electron density as a function of HU was obtained for both planning CT stimulator and CBCT using a Catphan-600 (The Phantom Laboratory, USA) calibration phantom. A clinical treatment planning system was employed for CT stimulator and CBCT based dose calculations and subsequent comparisons. The dosimetric consequence as the result of HU variation in CBCT was evaluated by comparing MU/cCy. The differences were about 2.7% (3-4MU/100cGy) in phantom and 2.5% (1-3MU/100cGy) in patients. The difference in HU values in Catphan was small. However, the magnitude of scatter and artifacts in CBCT images are affected by limitation of detector's FOV and patient's involuntary motions. CBCT images included scatters and artifacts due to In addition to guide the patient setup process, CBCT data acquired prior to the treatment be used to recalculate or verify the treatment plan based on the patient anatomy of the treatment area. And the CBCT has potential to become a very useful tool for on-line ART.)

  • PDF

Early Identification of Gifted Young Children and Dynamic assessment (유아 영재의 판별과 역동적 평가)

  • 장영숙
    • Journal of Gifted/Talented Education
    • /
    • v.11 no.3
    • /
    • pp.131-153
    • /
    • 2001
  • The importance of identifying gifted children during early childhood is becoming recognized. Nonetheless, most researchers preferred to study the primary and secondary levels where children are already and more clearly demonstrating what talents they have, and where more reliable predictions of gifted may be made. Comparatively lisle work has been done in this area. When we identify giftedness during early childhood, we have to consider the potential of the young children rather than on actual achievement. Giftedness during early childhood is still developing and less stable than that of older children and this prevents us from making firm and accurate predictions based on children's actual achievement. Dynamic assessment, based on Vygotsky's concept of the zone of proximal development(ZPD), suggests a new idea in the way the gifted young children are identified. In light of dynamic assessment, for identifying the potential giftedness of young children. we need to involve measuring both unassisted and assisted performance. Dynamic assessment usually consists of a test-intervene-retest format that focuses attention on the improvement in child performance when an adult provides mediated assistance on how to master the testing task. The advantages of the dynamic assessment are as follows: First, the dynamic assessment approach can provide a useful means for assessing young gifted child who have not demonstrated high ability on traditional identification method. Second, the dynamic assessment approach can assess the learning process of young children. Third, the dynamic assessment can lead an individualized education by the early identification of young gifted children. Fourth, the dynamic assessment can be a more accurate predictor of potential by linking diagnosis and instruction. Thus, it can make us provide an educational treatment effectively for young gifted children.

  • PDF

Comparison between the Calculated and Measured Doses in the Rectum during High Dose Rate Brachytherapy for Uterine Cervical Carcinomas (자궁암의 고선량율 근접 방사선치료시 전산화 치료계획 시스템과 in vivo dosimetry system 을 이용하여 측정한 직장 선량 비교)

  • Chung, Eun-Ji;Lee, Sang-Hoon
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.396-404
    • /
    • 2002
  • Purpose : Many papers support a correlation between rectal complications and rectal doses in uterine cervical cancer patients treated with radical radiotherapy. In vivo dosimetry in the rectum following the ICRU report 38 contributes to the quality assurance in HDR brachytherapy, especially in minimizing side effects. This study compares the rectal doses calculated in the radiation treatment planning system to that measured with a silicon diode the in vivo dosimetry system. Methods : Nine patients, with a uterine cervical carcinoma, treated with Iridium-192 high dose rate brachytherapy between June 2001 and Feb. 2002, were retrospectively analysed. Six to eight-fractions of high dose rate (HDR)-intracavitary radiotherapy (ICR) were delivered two times per week, with a total dose of $28\~32\;Gy$ to point A. In 44 applications, to the 9 patients, the measured rectal doses were analyzed and compared with the calculated rectal doses using the radiation treatment planning system. Using graphic approximation methods, in conjunction with localization radiographs, the expected dose values at the detector points of an intrarectal semiconductor dosimeter, were calculated. Results : There were significant differences between the calculated rectal doses, based on the simulation radiographs, and the calculated rectal doses, based on the radiographs in each fraction of the HDR ICR. Also, there were significant differences between the calculated and measured rectal doses based on the in-vivo diode dosimetry system. The rectal reference point on the anteroposterior line drawn through the lower end of the uterine sources, according to ICRU 38 report, received the maximum rectal doses in only 2 out of the nine patients $(22.2\%)$. Conclusion : In HDR ICR planning for conical cancer, optimization of the dose to the rectum by the computer-assisted planning system, using radiographs in simulation, is improper. This study showed that in vivo rectal dosimetry, using a diode detector during the HDR ICR, could have a useful role in quality control for HDR brachytherapy in cervical carcinomas. The importance of individual dosimeters for each HDR ICR is clear. In some departments that do not have the in vivo dosimetry system, the radiation oncologist has to find, from lateral fluoroscopic findings, the location of the rectal marker before each fractionated HDR brachytherapy, which is a necessary and important step of HDR brachytherapy for cervical cancer.