DOI QR코드

DOI QR Code

Vertical Variation Doping 구조를 도입한 1.2 kV 4H-SiC MOSFET 최적화

Optimization of 1.2 kV 4H-SiC MOSFETs with Vertical Variation Doping Structure

  • 김예진 (광운대학교 전자재료공학과) ;
  • 박승현 (광운대학교 전자재료공학과) ;
  • 이태희 (광운대학교 전자재료공학과) ;
  • 최지수 (광운대학교 전자재료공학과) ;
  • 박세림 (광운대학교 전자재료공학과) ;
  • 이건희 (광운대학교 전자재료공학과) ;
  • 오종민 (광운대학교 전자재료공학과) ;
  • 신원호 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Ye-Jin Kim (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Seung-Hyun Park (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Tae-Hee Lee (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Ji-Soo Choi (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Se-Rim Park (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Geon-Hee Lee (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Jong-Min Oh (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Weon Ho Shin (Department of Electric Materials Engineering, Kwangwoon University) ;
  • Sang-Mo Koo (Department of Electric Materials Engineering, Kwangwoon University)
  • 투고 : 2024.02.15
  • 심사 : 2024.03.04
  • 발행 : 2024.05.01

초록

High-energy bandgap material silicon carbide (SiC) is gaining attention as a next-generation power semiconductor material, and in particular, SiC-based MOSFETs are developed as representative power semiconductors to increase the breakdown voltage (BV) of conventional planar structures. However, as the size of SJ (Super Junction) MOSFET devices decreases and the depth of pillars increases, it becomes challenging to uniformly form the doping concentration of pillars. Therefore, a structure with different doping concentrations segmented within the pillar is being researched. Using Silvaco TCAD simulation, a SJ VVD (vertical variation doping profile) MOSFET with three different doping concentrations in the pillar was studied. Simulations were conducted for the width of the pillar and the doping concentration of N-epi, revealing that as the width of the pillar increases, the depletion region widens, leading to an increase in on-specific resistance (Ron,sp) and breakdown voltage (BV). Additionally, as the doping concentration of N-epi increases, the number of carriers increases, and the depletion region narrows, resulting in a decrease in Ron,sp and BV. The optimized SJ VVD MOSFET exhibits a very high figure of merit (BFOM) of 13,400 KW/cm2, indicating excellent performance characteristics and suggesting its potential as a next-generation highperformance power device suitable for practical applications.

키워드

과제정보

This work was supported by the Korea Institute for Advancement of Technology (KIAT) (P0012451) grant funded by the MOTIE, Korea, the National Research Foundation (NRF) (RS-2023-00266246) grant funded by the MSIT of Korea, and the Kwangwoon University in 2024.

참고문헌

  1. X. She, A. Q. Huang, O. Lucia, and B. Ozpineci, EEE Trans. Ind. Electron., 64, 8193 (2017). doi: https://doi.org/10.1109/TIE.2017.2652401
  2. F. Roccaforte, P. Fiorenza, G. Greco, R. L. Nigro, F. Giannazzo, F. Iucolano, and M. Saggio, Microelectron. Eng., 187, 66 (2018). doi: https://doi.org/10.1016/j.mee.2017.11.021
  3. J. B. Casady and R. W. Johnson, Solid-State Electron., 39, 1409 (1996). doi: https://doi.org/10.1016/0038-1101(96)00045-7
  4. M. Kim, J. H. Seo, U. Singisetti, and Z. Ma, J. Mater. Chem. C, 5, 8338 (2017). doi: https://doi.org/10.1039/C7TC02221B
  5. A. Sharma, S. J. Lee, Y. J. Jang, and J. P. Jung, J. Microelectron. Packag. Soc., 21, 71 (2014). doi: https://doi.org/10.6117/kmeps.2014.21.2.071
  6. S. Liu, M. Huang, M. Wang, M. Zhang, and J. Wei, Microelectron. J., 137, 105823 (2023). doi: https://doi.org/10.1016/j.mejo.2023.105823
  7. Z. Li and T. P. Chow, IEEE Trans. Electron Devices, 60, 3230 (2013). doi: https://doi.org/10.1109/TED.2013.2266544
  8. X. Luo, Q. Tan, J. Wei, K. Zhou, G. Deng, Z. Li, and B. Zhang, IEEE Trans. Electron Devices, 63, 2614 (2016). doi: https://doi.org/10.1109/TED.2016.2555327
  9. P. Vudumula and S. Kotamraju, IEEE Trans. Electron Devices, 66, 1402 (2019). doi: https://doi.org/10.1109/TED.2019.2894650
  10. Z. Cao, B. Duan, T. Shi, S. Yuan, and Y. Yang, IEEE Electron Device Lett., 38, 794 (2017). doi: https://doi.org/10.1109/LED.2017.2694842
  11. H. Huang, Y. Wang, C. H. Yu, Z. H. Tang, X. J. Li, J. Q. Yang, and F. Cao, IEEE J. Electron Devices Soc., 9, 1084 (2021). doi: https://doi.org/10.1109/JEDS.2021.3125706
  12. A. Haggag and K. Hess, IEEE Trans. Electron Devices, 47, 1624 (2000). doi: https://doi.org/10.1109/16.853040
  13. Z. Lin, H. Huang, and X. Chen, IEEE Trans. Electron Devices, 62, 228 (2014). doi: https://doi.org/10.1109/TED.2014.2372819
  14. K. M. Liu, F. I. Peng, K. P. Peng, H. C. Lin, and T. Y. Huang, Semicond. Sci. Technol., 29, 055001 (2014). doi: https://doi.org/10.1088/0268-1242/29/5/055001
  15. R. Sharma, A. Patnaik, and P. Sharma, Microelectron. J., 135, 105755 (2023). doi: https://doi.org/10.1016/j.mejo.2023.105755