DOI QR코드

DOI QR Code

Secondary Battery Electrode Material for Next Generation Mobility Power Storage

차세대 모빌리티 전력 저장 이차전지 핵심소재

  • Yu-Jin Song (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Seo-Hyun Kim (School of Advanced Material Science and Engineering, Sungkyunkwan University) ;
  • Se-Jin Kim (School of Advanced Material Science and Engineering, Sungkyunkwan University) ;
  • Jae Hoon Kim (School of Mechanical Engineering, Sungkyunkwan University)
  • 송유진 (성균관대학교 기계공학부) ;
  • 김서현 (성균관대학교 신소재공학부) ;
  • 김세진 (성균관대학교 신소재공학부) ;
  • 김재훈 (성균관대학교 기계공학부)
  • Received : 2024.06.15
  • Accepted : 2024.07.18
  • Published : 2024.09.30

Abstract

The rapid increase in energy consumption based on fossil fuels is accelerating global warming. In particular, the road transportation sector has high carbon dioxide emissions, so transitioning towards electric vehicles is recommended. Thus, the importance of secondary batteries is increasing. Secondary batteries are reversible batteries that use energy and can be reused through a charging and discharging process. Currently, lithium-ion batteries are widely used. Secondary batteries place importance on six major factors: energy, output, lifespan, environmental friendliness, cost, and stability. Research is actively being conducted to satisfy all six factors by understanding the material characteristics of each component of the battery. As it is difficult to move away from lithium as a cathode material, researchers are investigating higher performance materials that mix materials such as cobalt, nickel, manganese, and aluminum with lithium and use graphite, silicon, and lithium metal to increase capacity. In the case of electrolytes, liquid electrolytes are still mainly used. However, solid electrolytes are being studied due to their stability, but additional research must be conducted to satisfy the energy and output factors. This review paper aims to provide an understanding of secondary batteries through an overview of secondary batteries, the materials and characteristics of their components, their technological trends, and their associated companies.

화석원료 기반의 에너지 소비가 급증함에 따라 지구온난화 또한 가속화되고 있다. 특히 도로 수송분야는 이산화탄소 배출이 많은 분야여서 기존의 내연기관 자동차 대신 전기자동차 활용을 권장하고 있으며 이에 따라 이차전지의 중요성이 대두되고 있다. 이차전지는 에너지를 사용하고 충방전 과정을 통해 재사용 할 수 있는 가역적인 전지로, 현재는 리튬 이온을 캐리어로 이용한 리튬이온전지가 많이 사용되고 있다. 이차전지는 에너지, 출력, 수명, 환경친화적, 비용, 안정성 등의 6개 주요 요인을 중요시하고 있으며 각 구성 요소의 소재 특성을 파악하여 6개의 요인을 모두 만족하기 위한 연구가 활발히 진행되고 있다. 양극재는 리튬 소재에서 벗어나기 힘든 만큼 리튬을 매개로 코발트, 니켈, 망간, 알루미늄 등 여러 물질을 혼합하여 좀 더 성능이 높은 소재 연구를 수행하고 있으며, 음극재는 흑연, 실리콘, 리튬 금속 등을 이용하여 용량을 증가시키는 방향으로 진행하고 있다. 전해질의 경우 현재 액체 전해질이 주로 사용되지만 안정성을 고려하여 고체 전해질 또한 연구 중이며 에너지와 출력 요인을 만족하기 위해서는 추가적인 연구가 더욱 진행 되어야한다. 이번 리뷰 논문에서는 이차전지의 개요부터 구성 요소의 소재 및 특성, 기술 동향, 이차전지 기업을 소개하여 이차전지의 전반적인 내용에 대한 이해를 돕고자 한다.

Keywords

References

  1. Lim, N., Lee, S., and Song, W.-J., "Recent Progress of Polymeric Binder for Practical Silicon Anode-based Lithium-ion Batteries," J. Korean Batt. Soc., 2(2), 175-181 (2023).
  2. Daniel, C., Mohanty, D., Li, J., and Wood, D. L., "Cathode Materials Review," AIP Conf. Proc., 1597(1), 26-43 (2014).
  3. Park, J. K., Principles and Applications of Lithium Secondary Batteries, Wiley, Germany (2001).
  4. Park, H.-K., "The Research and Development Trend of Cathode Materials in Lithium Ion Battery," J. Korean Electroch. Soc., 11(3), 197-210 (2008).
  5. Zhang, H. and Zhang, J., "An Overview of Modification Strategies to Improve LiNi0.8Co0.1Mn0.1O2 (NCM811) Cathode Performance for Automotive Lithium-Ion Batteries," eTransportation, 7, 100105 (2020).
  6. Noh, H.-J., Youn, S., Yoon, C. S., and Sun, Y.-K., "Comparison of the Structural and Electrochemical Properties of Layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) Cathode Material for Lithium-ion Batteries," J. Power Source, 233, 121-130 (2013).
  7. Blomgren, G. E., "The Development and Future of Lithium Ion Batteries," J. Electrochem. Soc., 164(1), A5019 (2017).
  8. Han, D., "Layered Cathode Materials for Li-ion Rechargeable Batteries," Vac. Mag., 6(2), 5-9 (2019).
  9. Qiu, Q. Q., Yuan, S.-S., Bao, J., Wang, Q.-C., Yue, X.-Y., Li, X.-L., Wu, X.-J., and Zhou, Y.-N., "Suppressing Irreversible Phase Transition and Enhancing Electrochemical Performance of Ni-Rich Layered Cathode LiNi0.9Co0.05Mn0.05O2 by Fluorine Substitution," J. Energy Chem., 61, 574-581 (2021).
  10. Purwanto, A., Yudha, C. S., Ubaidillah, U., Widiyandari, H., Ogi, T., and Haerudin, H., "NCA Cathode Material: Synthesis Methods and Performance Enhancement Efforts," Mater. Res. Express, 5, 122001 (2018).
  11. Wang, D., Liu, W., Zhang, X., Huang, Y., Xu, M., and Xiao, M., "Review of Modified Nickel-Cobalt Lithium Aluminate Cathode Materials for Lithium-Ion Batteries," Int. J. Photoenergy, 2019, 13 (2019).
  12. Sin, J. W., "Lithium Ion Secondary Battery Silicon Anode Active Material," ASTI MARKET INSIGHT, 2022-077, KISTI. https://repository.kisti.re.kr/bitstream/10580/17979/1/ASTI%20MARKET%20INSIGHT%20077%280712%29.pdf (2022).
  13. Hwang, S. K. and Ryu, S. H., "Development of BN Added Free-Machining Steel Based on AISI P20," Korean Soc., Prec. Eng., 37(3), 178-180 (2020).
  14. Lee, C. H., Choi, H. S., Lee, C. H., Kim, H. J., and Shin, D. W., "Photocatalytic Property of Nano-structured TiO2 Thermal Sprayed Coating," J. Weld. Join., 21(3), 46-55 (2003).
  15. Bharathy, S. and Brett, L. L., "Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI," J. Electro. Soc., 165, A251 (2018).
  16. Yukio, S., "Organic Electrolytes of Secondary Lithium Batteries," Electrochem., 76(1), 2-15 (2007).
  17. Zhao, W., Ji, Y., Zhang, Z., Lin, M., Wu, Z., Zheng, X., Li, Q., and Yang, Y., "Recent Advances in the Research of Functional Electrolyte Additives for Lithium-Ion Batteries," Cur. Opin. Electrochem., 6(1), 84-91 (2017).
  18. Kim, D. I., "Research Trends on Oxide/Polymer Mixed Solid Electrolytes for All-Solid-State Batteries," New. Infor. Chem. Eng., 39(3), 315-319 (2021).
  19. http://wiki.hash.kr/index.php/%EA%B3%A0%EC%B2%B4%EC%A0%84%ED%95%B4%EC%A7%88 (accessed May. 2023).
  20. https://namu.wiki/w/%ED%85%8C%EC%8A%AC%EB%9D%BC%20%EB%B0%B0%ED%84%B0%EB%A6%AC (accessed May. 2024).
  21. https://inside.lgensol.com/category/tech/battery-lab/ (accessed February. 2024).
  22. IEA. Key World Energy Statistics. https://www.iea.org/data-and-statictics (2021).
  23. Jung, K. Y., Lee, S. M., Lee, Y. G., and Jung, H. K., "The Condition of the Secondary Battery Winner," Road Friends, (2023).
  24. Non-destructive technology transaction, Secondary Battery Industry Analysis Report on the core Technologies of Electric Vehicle and Cell Phobe Batteries, BT Times (2023).
  25. SNE research. Global ESS Market outlook. https://www.sneresearch.com/kr/business/report_view/177/page/0 (2024).
  26. Lee, S. J., Kim, A. R., and Yang, U. S., "Analysis of Global Primary Energy Consumption Status and Structural Changes in 2016," World Energy Market Insights, 18(41), 3-16 (2018).
  27. S.I. PwC. Transition to Circular Economy and Response Strategies, Insight Research (2022).
  28. Cho, K., Balamurugan, C., Im, H., and Kim, H.-J., "Ceramic-Coated Separator to Enhance Cycling Performance of Lithium-Ion Batteries at High Current Density," Korean J. Met. Mater., 59(11), 813-820 (2021).