• Title/Summary/Keyword: Silicon-Based

Search Result 1,458, Processing Time 0.038 seconds

The Effects of Driving Waveform of Piezoelectric Industrial Inkjet Head for Fime Patterns (산업용 압전 잉크젯 헤드의 구동신호에 따른 특성)

  • Kim, Young-Jae;Yoo, Young-Seuck;Sim, Won-Chul;Park, Chang-Sung;Joung, Jae-Woo;Oh, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1621-1622
    • /
    • 2006
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristic s were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Also we observed the movement characteristics of PZT actuator with LDV(Laser Doppler Vibrometer) system, oscilloscope and dynamic signal analyzer. Missing nozzles caused by bubbles in chamber were monitored by their resonance frequency. Using the water based ink of viscosity of 4.8 cps and surface tension of 0.025N/m, it is possible to eject stable droplets up to 20kHz, 4.4m/s and above 8pL at the different applied driving waveforms.

  • PDF

Development of silicon based flexible tactile sensor array mounted on flexible PCB (연성회로기판에 실장된 실리콘 기반의 유연 촉각센서 어레이 제작 및 평가)

  • Kim, K.N.;Kim, Y.K.;Lee, K.R.;Cho, W.S.;Lee, D.S.;Cho, N.K.;Kim, W.H.;Park, J.H.;Kim, S.W.;Ju, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.277-283
    • /
    • 2006
  • We presented that fabrication process and characteristics of 3 axes flexible tactile sensor available for normal and shear force fabricated using Si micromachining and packaging technologies. The fabrication processes for 3 axes flexible tactile sensor were classified in the fabrication of sensor chips and their packaging on the flexible PCB. The variation rate of resistance was about 2.1 %/N and 0.5 %/N in applying normal and shear force, respectively. The flexibility of fabricated 3 axes flexible tactile sensor array was good enough to place on the finger-tip.

MASK ROM IP Design Using Printed CMOS Process Technology (Printed CMOS 공정기술을 이용한 MASK ROM 설계)

  • Jang, Ji-Hye;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.788-791
    • /
    • 2010
  • We design 64-bit ROM IP for RFID tag chips using printed CMOS non-volatile memory IP design technology for a printed CMOS process. The proposed 64-bit ROM circuit is using ETRI's $0.8{\mu}m$ CMOS porocess, and is expected to reduce process complexity and cost of RFID tag chips compared to that using a conventional silicon fabrication based on a complex lithography process because the poly layer in a gate terminal is using printing technology of imprint process. And a BL precharge circuit and a BL sense amplifier is not required for the designed cell circuit since it is composed of a transmission gate instead of an NMOS transistor of the conventional ROM circuit. Therefore an output datum is only driven by a DOUT buffer circuit. The Operation current and layout area of the designed ROM of 64 bits with an array of 8 rows and 8 columns using $0.8{\mu}m$ ROM process is $9.86{\mu}A$ and $379.6{\times}418.7{\mu}m^2$.

  • PDF

A Study on Silicon Wafer Surfaces Treated with Electrolyzed Water (전리수를 이용한 Si 웨이퍼 표면 변화 연구)

  • 김우혁;류근걸
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.74-79
    • /
    • 2002
  • In the a rapid changes of the semiconductor manufacturing technologies for early 21st century, it may be safely said that a kernel of terms is the size increase of Si wafer and the size decrease of semiconductor devices. As the size of Si wafers increases and semiconductor device is miniaturized, the units of cleaning processes increases. A present cleaning technology is based upon RCA cleaning which consumes vast chemicals and ultra pure water (UPW) and is the high temperature process. Therefore, this technology gives rise to the environmental issue. To resolve this matter, candidates of advanced cleaning processes has been studied. One of them is to apply the electrolyzed water. In this work, Compared with surface on Si wafer with electrolyzed water cleaning and various chemicals cleaning, and analyzed Si wafer surface condition treated with elecoolyzed water by cleaning temperature and cleaning time. Especially. concentrate upon the contact angle. finally, contact angle on surface treated with cathode water cleaning is 17.28, and anode water cleaning is 34.1.

  • PDF

Driving Per Nozzle By Various Waveform Depending On Resonance Frequency In Piezoelectric Inkjet Head (잉크젯 헤드의 공진주파수에 따른 구동파형을 이용한 개별노즐 제어)

  • Kim, Y.J.;Park, C.S.;Sim, W.C.;Kang, P.J.;Yoo, Y.S.;Park, J.H.;Joung, J.W.;Oh, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1542-1543
    • /
    • 2007
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristics were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Using the water based ink of viscosity of 11.8 cps and surface tension of 0.025N/m, it is possible to eject stable droplets through 64 nozzles average velocity of 4.05 m/s with standard deviation of 0.06 m/s and average diameter of $29.2\;{\mu}m$ with standard variation of $0.5\;{\mu}m$.

  • PDF

Enhanced Si based negative electrodes using RF/DC magnetron sputtering for bulk lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.277-277
    • /
    • 2010
  • The capacity of the carbonaceous materials reached ca. $350\;mAhg^{-1}$ which is close to theorestical value of the carbon intercalation composition $LiC_6$, resulting in a relatively low volumetric Li capacity. Notwithstanding the capacities of carbon, it will not adjust well to the need so future devices. Silicon shows the highest gravimetric capacities (up to $4000\;mAhg^{-1}$ for $Li_{21}Si_5$). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. We focused on electrode materials in the multiphase form which were composed of two metal compounds to reduce the volume change in material design. A combination of electrochemically amorphous active material in an inert matrix (Si-M) has been investigated for use as negative electrode materials in lithium ion batteries. The matrix composited of Si-M alloys system that; active material (Si)-inactive material (M) with Li; M is a transition metal that does not alloy with Li with Li such as Ti, V or Mo. We fabricated and tested a broad range of Si-M compositions. The electrodes were sputter-deposited on rough Cu foil. Electrochemical, structural, and compositional characterization was performed using various techniques. The structure of Si-M alloys was investigated using X-ray Diffractometer (XRD) and transmission electron microscopy (TEM). Surface morphologies of the electrodes are observed using a field emission scanning electron microscopy (FESEM). The electrochemical properties of the electrodes are studied using the cycling test and electrochemical impedance spectroscopy (EIS). It is found that the capacity is strongly dependent on Si content and cycle retention is also changed according to M contents. It may be beneficial to find materials with high capacity, low irreversible capacity and that do not pulverize, and that combine Si-M to improve capacity retention.

  • PDF

Preparation of ultra-clean hydrogen and deuterium terminated Si(111)-($1{\times}1$) surfaces and re-observation of the surface phonon dispersion curves

  • Kato, H.;Taoka, T.;Murugan, P.;Kawazoe, Y.;Yamada, T.;Kasuya, A.;Suto, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.4-5
    • /
    • 2010
  • The surface phonon is defined as a coherent vibrational excitation of surface atoms propagating along the surface. It is characterized by a phonon dispersion curves, which were extensively studied in 1990's using helium atom scattering and high-resolution electron-energy-loss spectroscopy (HREELS)[1].The understanding is mainly based on the theoretical framework of a classical bond model or cluster calculations. The recent sample preparation and first principles calculations open the naval way to deep insight for surface phonon problems. The surface phonon dispersion on the hydrogen-terminated Si(111)-($1{\times}1$) surface [H:Si(111)] is the typical system and already reported experimentally [2] and theoretically [3], although the understandingis incomplete. The sample contaminated by the oxygen atoms on the surface and the calculations were also classical. In this study, firstly, we have prepared an ultra-clean H:Si(111) surface [4] and measured the surface phonon dispersion curvesusing HREELS. Secondly, we have performed first-principles density functional calculations with the projector augmented wave functionals, as implemented in VASP, using generalized gradient approximations. We used aslab of six silicon layers and both top and bottom surfaces were terminated with hydrogen atoms. Finally, we have compared with the surface phonon dispersion of deuterium-terminatedSi(111)-($1{\times}1$) surface[5] and led to our conclusions. The Si-H stretching and the bending modes are observed at 258.5 and 78.2 meV, respectively. These energies are the same as the previously reported values [2], but the energy-loss peaks at the lower energy regions are dramatically shifted. Through this combination study, we have formulated the procedure of preparing ultra-clean H:Si(111)/D:Si(111), which was confirmed by HREELS vibrational analysis. The Si surface will be utilized for further nano-physics research as well as for the materials for nano-fubrication.

  • PDF

Organic Memory Device Using Self-Assembled Monolayer of Nanoparticles (나노입자 자기조립 단일층을 이용한 유기메모리 소자)

  • Jung, Hunsang;Oh, Sewook;Kim, Yejin;Kim, Minkeun;Lee, Hyun Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.515-520
    • /
    • 2012
  • In this review, the fabrication of silicon based memory capacitor and organic memory thin film transistors (TFTs) was discussed for their potential identification tag applications and biosensor applications. Metal or non-metal nanoparticles (NPs) could be capped with chemicals or biomolecules such as protein and oligo-DNA, and also be self-assembly monolayered on corresponding target biomolecules conjugated dielectric layers. The monolayered NPs were formed to be charging elements of a nano floating gate layer as forming organic memody deivces. In particular, the strong and selective binding events of the NPs through biomolecular interactions exhibited effective electrostatic phenomena in memory capacitors and TFTs formats. In addition, memory devices fabricated as organic thin film transistors (OTFTs) have been intensively introduced to facilitate organic electronics era on flexible substrates. The memory OTFTs could be applicable eventually to the development of new conceptual devices.

Highly Stable Graphene Field-effect Transistors using Inverse Transfer Method (역전사법을 활용한 고안정성 그래핀 기반 전계효과 트랜지스터 제작)

  • Lee, Eunho;Bang, Daesuk
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.153-157
    • /
    • 2021
  • Graphene, a two-dimensional carbon allotrope, has outstanding mechanical and electrical properties. In particular, the charge carrier mobility of graphene is known to be about 100 times higher than that of silicon, and it has received attention as a core material for next-generation electronic devices. However, graphene is very sensitive to environmental conditions, especially vulnerable to moisture or oxygen. It becomes a disadvantage in that the stability of the graphene-based electronic device, so various attempts are being made to solve this problem. In this work, we report a method to greatly improve the stability by controlling the surface energy of the polymer layer used for transferring the insulating layer of the graphene field-effect transistor. As the surface energy of the polymer used as the insulating layer was lowered, the stability could be improved by effectively controlling the adsorption of impurities in the atmosphere such as water molecules or oxygen.

Serial line multiplexing method based on bipolar pulse for PET

  • Kim, Yeonkyeong;Choi, Yong;Kim, Kyu Bom;Leem, Hyuntae;Jung, Jin Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3790-3797
    • /
    • 2021
  • Although the individual channel readout method can improve the performance of PET detectors with pixelated photo-sensors, such as silicon photomultiplier (SiPM), this method leads to a significant increase in the number of readout channels. In this study, we proposed a novel multiplexing method that could effectively reduce the number of readout channels to reduce system complexity and development cost. The proposed multiplexing circuit was designed to generate bipolar pulses with different zero-crossing points by adjusting the time constant of the high-pass filter connected to each channel of a pixelated photo-sensor. The channel position of the detected gamma-ray was identified by estimating the width between the rising edge and the zero-crossing point of the bipolar pulse. In order to evaluate the performance of the proposed multiplexing circuit, four detector blocks, each consisting of a 4 × 4 array of 3 mm × 3 mm × 20 mm LYSO and a 4 × 4 SiPM array, were constructed. The average energy resolution was 13.2 ± 1.1% for all 64 crystal pixels and each pixel position was accurately identified. A coincidence timing resolution was 580 ± 12 ps. The experimental results indicated that the novel multiplexing method proposed in this study is able to effectively reduce the number of readout channels while maintaining accurate position identification with good energy and timing performance. In addition, it could be useful for the development of PET systems consisting of a large number of pixelated detectors.