• 제목/요약/키워드: Silicon-Based

검색결과 1,458건 처리시간 0.033초

Silicon-Based Anode with High Capacity and Performance Produced by Magnesiothermic Coreduction of Silicon Dioxide and Hexachlorobenzene

  • Ma, Kai
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권3호
    • /
    • pp.317-322
    • /
    • 2021
  • Silicon (Si) has been considered as a promising anode material because of its abundant reserves in nature, low lithium ion (Li+) intercalation/de-intercalation potential (below 0.5 V vs. Li/Li+) and high theoretical capacity of 4200 mA h/g. In this paper, we prepared a silicon-based (Si-based) anode material containing a small amount of silicon carbide by using magnesiothermic coreduction of silica and hexachlorobenzene. Because of good conductivity of silicon carbide, the cycle performance of the silicon-based anode materials containing few silicon carbide is greatly improved compared with pure silicon. The raw materials were formulated according to a silicon-carbon molar ratio of 10:0, 10:1, 10:2 and 10:3, and the obtained products were purified and tested for their electrochemical properties. After 1000 cycles, the specific capacities of the materials with silicon-carbon molar ratios of 10:0, 10:1, 10:2 and 10:3 were still up to 412.3 mA h/g, 970.3 mA h/g, 875.0 mA h/g and 788.6 mA h/g, respectively. Although most of the added carbon reacted with silicon to form silicon carbide, because of the good conductivity of silicon carbide, the cycle performance of silicon-based anode materials was significantly better than that of pure silicon.

Opto-mechanical Design of Monocrystalline Silicon Mirror for a Reflective Imaging Optical System

  • Liu, Xiaofeng;Zhang, Xin;Tian, Fuxiang
    • Current Optics and Photonics
    • /
    • 제6권3호
    • /
    • pp.236-243
    • /
    • 2022
  • Monocrystalline silicon has excellent properties, but it is difficult to design and manufacture silicon-based mirrors that can meet engineering applications because of its hard and brittle properties. This paper used monocrystalline silicon as the main mirror material in an imaging system to carry out a feasibility study. The lightweight design of the mirror is completed by the method of center support and edge cutting. The support structure of the mirror was designed to meet the conditions of wide temperature applications. Isight software was used to optimize the feasibility sample, and the optimized results are that the root mean square error of the mirror surface is 3.6 nm, the rigid body displacement of the mirror is 2.1 ㎛, and the angular displacement is 2.5" under the conditions of a temperature of ∆20 ℃ and a gravity load of 1 g. The optimized result show that the silicon-based mirror developed in this paper can meet the requirements of engineering applications. This research on silicon-based mirrors can provide guidance for the application of other silicon-based mirrors.

Bio-Electronics

  • 최정우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.123-126
    • /
    • 2000
  • Bio-electronics has been considered as one of the most appropriate candidates to overcome the frequently encountered problems in the development of future electronic devices. It has some advantages such as ultra fast electron transfer rate and high-energy efficiency compared with the silicon-based electronic devices. In silicon-based electronics, there are some of limitations of manufacturing process and physical problems. Bio-electronics can overcome the limitation and problem of silicon-based electronics. Bio-electronics has possible application areas as biosensor, biochip, bio-transistor and bio-computer. In the future, bio-electronics can substitute the silicon-based electronics.

  • PDF

TSV 기반 3차원 소자의 열적-기계적 신뢰성 (Thermo-Mechanical Reliability of TSV based 3D-IC)

  • 윤태식;김택수
    • 마이크로전자및패키징학회지
    • /
    • 제24권1호
    • /
    • pp.35-43
    • /
    • 2017
  • The three-dimensional integrated circuit (3D-IC) is a general trend for the miniaturized and high-performance electronic devices. The through-silicon-via (TSV) is the advanced interconnection method to achieve 3D integration, which uses vertical metal via through silicon substrate. However, the TSV based 3D-IC undergoes severe thermo-mechanical stress due to the CTE (coefficient of thermal expansion) mismatch between via and silicon. The thermo-mechanical stress induces mechanical failure on silicon and silicon-via interface, which reduces the device reliability. In this paper, the thermo-mechanical reliability of TSV based 3D-IC is reviewed in terms of mechanical fracture, heat conduction, and material characteristic. Furthermore, the state of the art via-level and package-level design techniques are introduced to improve the reliability of TSV based 3D-IC.

벌크 마이크로 머쉬닝에 의한 다결정 실리콘 압력센서 제작 관한 연구 (A Study on Fabrication of Piezorresistive Pressure Sensor)

  • 임재홍;박용욱;윤석진;정형진;윤영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.677-680
    • /
    • 1999
  • Rapid developing automation technology enhances the need of sensors. Among many materials, silicon has the advantages of electrical and mechanical property, Single-crystalline silicon has different piezoresistivity on 야fferent directions and a current leakage at elevated temperature, but poly-crystalline silicon has the possibility of controling resistivity using dopping ions, and operation at high temperature, which is grown on insulating layers. Each wafer has slightly different thicknesses that make difficult to obtain the precisely same thickness of a diaphragm. This paper deals with the fabrication process to make poly-crystalline silicon based pressure sensors which includes diaphragm thickness and wet-etching techniques for each layer. Diaphragms of the same thickness can be fabricated consisting of deposited layers by silicon bulk etching. HF etches silicon nitride, HNO$_3$+HF does poly -crystalline silicon at room temperature very fast. Whereas ethylenediamice based etchant is used to etch silicon at 11$0^{\circ}C$ slowly.

  • PDF

Simply Modified Biosensor for the Detection of Human IgG Based on Protein AModified Porous Silicon Interferometer

  • Park, Jae-Hyun;Koh, Young-Dae;Ko, Young-Chun;Sohn, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1593-1597
    • /
    • 2009
  • A biosensor has been developed based on induced wavelength shifts in the Fabry-Perot fringes in the visible reflection spectrum of appropriately derivatized thin films of porous silicon semiconductors. Porous silicon (PSi) was generated by an electrochemical etching of silicon wafer using two electrode configurations in aqueous ethanolic HF solution. Porous silicon displayed Fabry-Perot fringe patterns whose reflection maxima varied spatially across the porous silicon. The sensor system studied consisted of a mono layer of porous silicon modified with Protein A. The system was probed with various fragments of an aqueous Human Immunoglobin G (Ig G) analyte. The sensor operated by measurement of the Fabry-Perot fringes in the white light reflection spectrum from the porous silicon layer. Molecular binding was detected as a shift in wavelength of these fringes.

Vertical Profile Silicon Deep Trench Etch와 Loading effect의 최소화에 대한 연구 (The Study for Investigation of the sufficient vertical profile with reducing loading effect for silicon deep trench etching)

  • 김상용;정우양;이근만;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.118-119
    • /
    • 2009
  • This paper presents the feature profile evolution silicon deep trench etching, which is very crucial for the commercial wafer process application. The silicon deep trenches were etched with the SF6 gas & Hbr gas based process recipe. The optimized silicon deep trench process resulted in vertical profiles (87o~90o) with loading effect of < 1%. The process recipes were developed for the silicon deep trench etching applications. This scheme provides vertically profiles without notching of top corner was observed. In this study, the production of SF6 gas based silicon deep trench etch process much more strongly than expected on the basis of Hbr gas trench process that have been investigated by scanning electron microscope (SEM). Based on the test results, it is concluded that the silicon deep trench etching shows the sufficient profile for practical MOS FET silicon deep trench technology process.

  • PDF

Industrial Applications of Si-based Ceramics

  • Eichler, Jens
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.561-565
    • /
    • 2012
  • Due to their unique combination of properties, Si-based ceramics, such as silicon carbide (SiC), silicon nitride ($Si_3N_4$) and silicon oxide ($SiO_2$ as fused silica), have a range of industrial applications in fields such as the chemical industry, aluminum manufacturing, oil and gas production and solar cell production. For each materials group, examples of typical applications from various industry sectors are presented while taking into account the property fingerprint.

Nano-porous Silicon Microcavity Sensors for Determination of Organic Fuel Mixtures

  • Pham, Van Hoi;Bui, Huy;Hoang, Le Ha;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Son;Ngo, Quang Minh
    • Journal of the Optical Society of Korea
    • /
    • 제17권5호
    • /
    • pp.423-427
    • /
    • 2013
  • We present the preparation and characteristics of liquid-phase sensors based on nano-porous silicon multilayer structures for determination of organic content in gasoline. The principle of the sensor is a determination of the cavity-resonant wavelength shift caused by refractive index change of the nano-porous silicon multilayer cavity due to the interaction with liquids. We use the transfer matrix method (TMM) for the design and prediction of characteristics of microcavity sensors based on nano-porous silicon multilayer structures. The preparation process of the nano-porous silicon microcavity is based on electrochemical etching of single-crystal silicon substrates, which can exactly control the porosity and thickness of the porous silicon layers. The basic characteristics of sensors obtained by experimental measurements of the different liquids with known refractive indices are in good agreement with simulation calculations. The reversibility of liquid-phase sensors is confirmed by fast complete evaporation of organic solvents using a low vacuum pump. The nano-porous silicon microcavity sensors can be used to determine different kinds of organic fuel mixtures such as bio-fuel (E5), A92 added ethanol and methanol of different concentrations up to 15%.

다공성 실리콘을 근거한 실리콘 양자점을 이용한 휘발성 알콜 증기의 감지 (Detection of Volatile Alcohol Vapors Using Silicon Quantum Dots Based on Porous Silicon)

  • 조보민;엄성용;진성훈;최태은;양진석;조성동;손홍래
    • 통합자연과학논문집
    • /
    • 제3권2호
    • /
    • pp.117-121
    • /
    • 2010
  • Silicon quantum dots base on photoluminescent porous silicon were prepared from an electrochemical etching of n-type silicon wafer (boron-dopped<100> orientation, resistivity of 1~10 ${\Omega}-cm$) and used as a alcohol sensor. Silicon quantum dots displayed an emission band at the wavelength of 675 nm with an excitation wavelength of 480 nm. Photoluminescence of silicon quantum dots was quenched in the presence of alcohol vapors such as methanol, ethanol, and isopropanol. Quenching efficiencies of 21.5, 32.5, and 45.8% were obtained for isopropanol, ethanol, and methanol, respectively. A linear relationship was obtained between quenching efficiencies and vapor pressure of analytes used. Quenching photoluminescence was recovered upon introducing of fresh air after the detection of alcohol. This provides easy fabrication of alcohol sensor based on porous silicon.