• Title/Summary/Keyword: Silicon thin film solar cell

Search Result 173, Processing Time 0.028 seconds

Structural and Optical Properties of Copper Indium Gallium Selenide Thin Films Prepared by RF Magnetron Sputtering

  • Kong, Seon-Mi;Fan, Rong;Kim, Dong-Chan;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.158-158
    • /
    • 2011
  • $Cu(In_xGa_{1-x})Se_2$ (CIGS) thin film solar cell is one of the most promising solar cells in photovoltaic devices. CIGS has a direct band gap which varied from 1.0 to 1.26 eV, depending on the Ga to In ratio. Also, CIGS has been studying for an absorber in thin film solar cells due to their highest absorption coefficient which is $1{\times}10^5cm^{-1}$ and good stability for deposition process at high temperature of $450{\sim}590^{\circ}C$. Currently, the highest efficiency of CIGS thin film solar cell is approximately 20.3%, which is closely approaching to the efficiency of poly-silicon solar cell. The deposition technique is one of the most important points in preparing CIGS thin film solar cells. Among the various deposition techniques, the sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have been prepared by rf magnetron sputtering method using a single target. The optical and structural properties of CIGS films are generally dependent on deposition parameters. Therefore, we will explore the influence of deposition power on the properties of CIGS films and the films will be deposited by rf magnetron sputtering using CIGS single target on Mo coated soda lime glass at $500^{\circ}C$. The thickness of CIGS films will be measured by Tencor-P1 profiler. The optical properties will be measured by UV-visible spectroscopy. The crystal structure will be analyzed using X-ray diffraction (XRD). Finally the optimal deposition conditions for CIGS thin films will be developed.

  • PDF

High Performance Amorphous Silicon Oxide Thin Film Solar Cells Fabricated at Very Low Temperature (극저온에서 증착된 비정질실리콘 산화막 기반의 고성능 박막태양전지)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1694-1696
    • /
    • 2016
  • Present thin film solar cells with hydrogenated amorphous silicon oxide (a-SiO:H) as an absorber suffer from low fill factor(FF) of 61~64 [%] in spite of its benefits related to high open circuit voltage ($V_{oc}$). Since degraded quality of a-SiO:H absorber by alloying with oxygen can affect the FF, we aimed to achieve high photosensitivity by minimizing $CO_2$ gas addition. Improving optical gap($E_{opt}$) has been attained by strong hydrogen dilution combined with lowering substrate temperature down to 100 [$^{\circ}C$]. Small amount of the $CO_2$ was added in order to disturb microcrystalline formation by high hydrogen dilution. The developed a-SiO:H has high photosensitivity (${\sim}2{\times}10^5$) and high $E_{opt}$ of 1.85 [eV], which contributed to attain remarkable FF of 74 [%] and high $V_{oc}$ (>1 [V]). As a result, high power conversion efficiency of 7.18 [%] was demonstrated by using very thin absorber layer of only 100 [nm], even though we processed all experiment at extremely low temperature of 100 [$^{\circ}C$].

Bow Reduction in Thin Crystalline Silicon Solar Cell with Control of Rear Aluminum Layer Thickness (박형 결정질 실리콘 태양전지에서의 휨현상 감소를 위한 알루미늄층 두께 조절)

  • Baek, Tae-Hyeon;Hong, Ji-Hwa;Lim, Kee-Joe;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.108-112
    • /
    • 2012
  • Crystalline silicon solar cell remains the major player in the photovoltaic marketplace with 90 % of the market, despite the development of a variety of thin film technologies. Silicon's excellent efficiency, stability, material abundance and low toxicity have helped to maintain its position of dominance. However, the cost of silicon photovoltaic remains a major barrier to reducing the cost of silicon photovoltaics. Using the crystalline silicon wafer with thinner thickness is the promising way for cost and material reduction in the solar cell production. However, the thinner thickness of silicon wafer is, the worse bow phenomenon is induced. The bow phenomenon is observed when two or more layers of materials of different temperature expansion coefficiencies are in contact, in this case silicon and aluminum. In this paper, the solar cells were fabricated with different thicknesses of Al layer in order to reduce the bow phenomenon. With lower paste applications, we observed that the bow could be reduced by up to 40% of the largest value with 130 micron thickness of the wafer even though the conversion efficiency decrease of 0.5 % occurred. Since the bowed wafers lead to unacceptable yield losses during the module construction, the reduction of bow is indispensable on thin crystalline silicon solar cell. In this work, we have studied on the counterbalance between the bow and conversion efficiency and also suggest the formation of enough back surface field (BSF) with thinner Al paste application.

  • PDF

Fabrication and Properties of pn Diodes with Antimony-doped n-type Si Thin Film Structures on p-type Si (100) Substrates (p형 Si(100) 기판 상에 안티몬 도핑된 n형 Si박막 구조를 갖는 pn 다이오드 제작 및 특성)

  • Kim, Kwang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.39-43
    • /
    • 2017
  • It was confirmed that the silicon thin films fabricated on the p-Si (100) substrates by using DIPAS (DiIsoPropylAminoSilane) and TDMA-Sb (Tris-DiMethylAminoAntimony) sources by RPCVD method were amorphous and n-type silicon. The fabricated amorphous n-type silicon films had electron carrier concentrations and electron mobilities ranged from $6.83{\times}10^{18}cm^{-3}$ to $1.27{\times}10^{19}cm^{-3}$ and from 62 to $89cm^2/V{\cdot}s$, respectively. The ideality factor of the pn junction diode fabricated on the p-Si (100) substrate was about 1.19 and the efficiency of the fabricated pn solar cell was 10.87%.

  • PDF

A Study on Application of Ag Nano-Dots and Silicon Nitride Film for Improving the Light Trapping in Mono-crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 광 포획 개선을 위한 Ag Nano-Dots 및 질화막 적용 연구)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.12-17
    • /
    • 2019
  • In this study, the Ag nano-dots structure and silicon nitride film were applied to the textured wafer surface to improve the light trapping effect of mono-crystalline silicon solar cell. Ag nano-dots structure was formed by performing a heat treatment for 30 minutes at 650℃ after the deposition of 10nm Ag thin film. Ag thin film deposition was performed using a thermal evaporator. The silicon nitride film was deposited by a Hot-wire chemical vapor deposition. The effect of light trapping was compared and analyzed through light reflectance measurements. Experimental results showed that the reflectivity increased by 0.5 ~ 1% under all nitride thickness conditions when Ag nano-dots structure was formed before nitride film deposition. In addition, when the Ag nano-dots structure is formed after deposition of the silicon nitride film, the reflectance is increased in the nitride film condition of 70 nm or more. When the HF treatment was performed for 60 seconds to improve the Ag nano-dot structure, the overall reflectance was improved, and the reflectance was 0.15% lower than that of the silicon nitride film-only sample at 90 nm silicon nitride film condition.

High-Efficiency a-Si:H Solar Cell Using In-Situ Plasma Treatment

  • Han, Seung Hee;Moon, Sun-Woo;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok;Lee, Seungmin;Kim, Jungsu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.230-230
    • /
    • 2013
  • In amorphous or microcrystalline thin-film silicon solar cells, p-i-n structure is used instead of p/n junction structure as in wafer-based Si solar cells. Hence, these p-i-n structured solar cells inevitably consist of many interfaces and the cell efficiency critically depends on the effective control of these interfaces. In this study, in-situ plasma treatment process of the interfaces was developed to improve the efficiency of a-Si:H solar cell. The p-i-n cell was deposited using a single-chamber VHF-PECVD system, which was driven by a pulsed-RF generator at 80 MHz. In order to solve the cross-contamination problem of p-i layer, high RF power was applied without supplying SiH4 gas after p-layer deposition, which effectively cleaned B contamination inside chamber wall from p-layer deposition. In addition to the p-i interface control, various interface control techniques such as thin layer of TiO2 deposition to prevent H2 plasma reduction of FTO layer, multiple applications of thin i-layer deposition and H2 plasma treatment, H2 plasma treatment of i-layer prior to n-layer deposition, etc. were developed. In order to reduce the reflection at the air-glass interface, anti-reflective SiO2 coating was also adopted. The initial solar cell efficiency over 11% could be achieved for test cell area of 0.2 $cm^2$.

  • PDF

Fabrication and Properties of Silicon Solar Cells using Al2O3/Si/Al2O3 Structures (Al2O3/Si/Al2O3구조를 이용한 실리콘태양전지 제작 및 특성)

  • Kim, Kwang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.45-49
    • /
    • 2015
  • Using a combined CVD and ALD equipment system, multi-layer quantum well structures of $Al_2O_3/a-Si/Al_2O_3$ were fabricated on silicon Schottky junction devices and implemented to quantum well solar cells, in which the 1~1.5 nm thicknesses of the aluminum oxide films and the a-Si thin film layers were deposited at $300^{\circ}C$ and $450^{\circ}C$, respectively. Fabricated solar cell was operated by tunneling phenomena through the inserted quantum well structure being generated electrons on the silicon surface. Efficiency of the fabricated solar cell inserted with multi-quantum well of 41 layers has been increased by about 10 times that of the solar cell of pure Schottky junction solar cell.

The Study on the Reflection Coating Design Scheme in the Thin-Film Silicon Solar Cell (박막 실리콘 태양전지의 반사코팅 설계기술 연구)

  • Kim, Chang-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5172-5177
    • /
    • 2011
  • This paper presents a reflection coating design scheme in the thin-film silicon solar cell. The antireflection(high reflection) coating skill is needed in the front(back) panel of the thin-film solar cell to improve an efficiency of light absorbing. In the single structure a reflectivity is changed according to the thickness of coating for antireflection scheme and its minimum value can be obtained by controlling thickness of coating. In the symmetric multi layer structure low reflectivity can be obtained in the wide wavelength range. And we also find that high reflectivity can be obtained through multi layer structure, which has alternate layers of high and low material, for high reflection scheme in the back panel.

[ $a-Si:H/{\mu}c-Si:H$ ] thin-film tandem solar cells (비정질/마이크로 탠덤 구조형 실리콘 박막 태양전지)

  • Lee, Jeong-Chul;Song, Jin-Soo;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.228-231
    • /
    • 2006
  • This paper briefly introduces silicon based thin film solar cells: amorphous (a-Si:H), microcrystalline ${\mu}c-Si:H$ single junction and $a-Si:H/{\mu}c-Si:H$ tandem solar cells. The major difference of a-Si:H and ${\mu}c-Si:H$ cells comes from electro-optical properties of intrinsic Si-films (active layer) that absorb incident photon and generate electron-hole pairs. The a-Si:H film has energy band-gap (Eg) of 1.7-1.8eV and solar cells incorporating this wide Eg a-Si:H material as active layer commonly give high voltage and low current, when illuminated, compared to ${\mu}c-Si:H$ solar cells that employ low Eg (1.1eV) material. This Eg difference of two materials make possible tandem configuration in order to effectively use incident photon energy. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells, therefore, have a great potential for low cost photovoltaic device by its various advantages such as low material cost by thin-film structure on low cost substrate instead of expensive c-Si wafer and high conversion efficiency by tandem structure. In this paper, the structure, process and operation properties of Si-based thin-film solar cells are discussed.

  • PDF

A Review of Wet Chemical Etching of Glasses in Hydrofluoric Acid based Solution for Thin Film Silicon Solar Cell Application

  • Park, Hyeongsik;Cho, Jae Hyun;Jung, Jun Hee;Duy, Pham Phong;Le, Anh Huy Tuan;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.75-82
    • /
    • 2017
  • High efficiency thin film solar cells require an absorber layer with high absorption and low defect, a transparent conductive oxide (TCO) film with high transmittance of over 80% and a high conductivity. Furthermore, light can be captured through the glass substrate and sent to the light absorbing layer to improve the efficiency. In this paper, morphology formation on the surface of glass substrate was investigated by using HF, mainly classified as random etching and periodic etching. We discussed about the etch mechanism, etch rate and hard mask materials, and periodic light trapping structure.