• Title/Summary/Keyword: Silicon nitride films

Search Result 159, Processing Time 0.023 seconds

Microstructural and Mechanical Characterization of Nanocomposite Ti-Al-Si-N Films Prepared by a Hybrid Deposition System (하이브리드 증착 시스템에 의해 합성된 나노복합체 Ti-Al-Si-N 박막의 미세구조와 기계적 특성)

  • 박인욱;최성룡;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Quaternary Ti-Al-Si-N films were deposited on WC-Co substrates by a hybrid deposition system of arc ion plating (AIP) method for Ti-Al source and DC magnetron sputtering technique for Si incorporation. The synthesized Ti-Al-Si-N films were revealed to be composites of solid-solution (Ti, Al, Si)N crystallites and amorphous Si3N4 by instrumental analyses. The Si addition in Ti-Al-N films affected the refinement and uniform distribution of crystallites by percolation phenomenon of amorphous silicon nitride, similarly to Si effect in TiN film. As the Si content increased up to about 9 at.%, the hardness of Ti-Al-N film steeply increased from 30 GPa to about 50 GPa. The highest microhardness value (~50 GPa) was obtained from the Ti-Al-Si-N film haying the Si content of 9 at.%, the microstructure of which was characterized by a nanocomposite of nc-(Ti,Al,Si) N/a$-Si_3$$N_4$.

OPTICAL PROPERTIES OF AMORPHOUS CN FILMS

  • Park, Sung-Jin;Lee, Soon-Il;Oh, Soo-Ghee;Bae, J.H.;Kim, W.M.;Cheong, B.;Kim, S.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.556-562
    • /
    • 1996
  • Carbon nitride (CN) films were synthesized on silicon substrates by a combined ion-beam and laser-ablation method under various conditions; ion-beam energy and ion-beam current were varied. Raman spectroscopy and spectroscopic ellipsometry (SE) were employed to characterize respectively the structural and the optical properties of the CN films. Raman spectra show that all the CN films are amorphous independent of the ion-beam current and the ion-beam energy. Refractive indices, extinction coefficients and optical band gaps which were determined from the measured SE spectra exhibit a significant dependence on the synthesis conditions. Especially, the decrease of the refractive indices and the shrinkage of the optical band gap is noticeable as the ion-beam current and/or the ion-beam energy increase.

  • PDF

Formation of ultra-thin $Ta_{2}O_{5}$ film on thermal silicon nitrides (열적 성장된 실리콘 질화막위에 산화 탄탈륨 초박막의 형성)

  • 이재성;류창명;강신원;이정희;이용현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.35-43
    • /
    • 1995
  • To obtain high quality of $Ta_{2}O_{5}$ film, two dielectric layers of $Si_{3}N_{4}$ and $Ta_{2}O_{5}$ were subsequently formed on Si wafer. Silicon nitride films were thermally grown in 10 Torr ammonia ambient by R.F induced heating system. The thickness of thermally grown $Si_{3}N_{4}$ film was able to be controlled in the range of tens $\AA$ due to the self-limited growth property. $Ta_{2}O_{5}$ film of 200$\AA$ thickness was then deposited on the as-grown $Si_{3}N_{4}$ film about 25$\AA$ thickness by sputtering method and annealed at $900^{\circ}C$in $O_{2}$ ambient for 1hr. Stoichiometry film was prepared by the annealing in oxygen ambient. Despite the high temperature anneal process, silicon oxide layer was not grown at the interface of the layered films because of the oxidation barrier effect of Si$_{3}$N$_{4}$ film. The fabricated $Ta_{2}O_{5}$/$Si_{3}N_{4}$ film showed low leakage current less than several nA and high dielectric breakdown strength.

  • PDF

A Study on the Silicon Nitride for the poly-Si Thin film Transistor (다결정 박막 트랜지스터 적용을 위한 SiNx 박막 연구)

  • 김도영;김치형;고재경;이준신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1175-1180
    • /
    • 2003
  • Transformer Coupled Plasma Chemical Vapor Deposited (TCP-CVD) silicon nitride (SiNx) is widely used as a gate dielectric material for thin film transistors (TFT). This paper reports the SiNx films, grown by TCP-CVD at the low temperature (30$0^{\circ}C$). Experimental investigations were carried out for the optimization o(SiNx film as a function of $N_2$/SiH$_4$ flow ratio varying ,3 to 50 keeping rf power of 200 W, This paper presents the dielectric studies of SiNx gate in terms of deposition rate, hydrogen content, etch rate and leakage current density characteristics lot the thin film transistor applications. And also, this work investigated means to decrease the leakage current of SiNx film by employing $N_2$ plasma treatment. The insulator layers were prepared by two step process; the $N_2$ plasma treatment and then PECVD SiNx deposition with SiH$_4$, $N_2$gases.

Neural Network Modeling of Charge Concentration of Thin Films Deposited by Plasma-enhanced Chemical Vapor Deposition (플라즈마 화학기상법을 이용하여 증착된 박막 전하 농도의 신경망 모델링)

  • Kim, Woo-Serk;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.108-110
    • /
    • 2006
  • A prediction model of charge concentration of silicon nitride (SiN) thin films was constructed by using neural network and genetic algorithm. SIN films were deposited by plasma enhanced chemical vapor deposition and the deposition process was characterized by means of $2^{6-1}$ fractional factorial experiment. Effect of five training factors on the model prediction performance was optimized by using genetic algorithm. This was examined as a function of the learring rate. The root mean squared error of optimized model was 0.975, which is much smaller than statistical regression model by about 45%. The constructed model can facilitate a Qualitative analysis of parameter effects on the charge concentration.

  • PDF

Characteristics of AlN thin film using RF Magnetron Sputtering (RF Magnetron Sputtering 법으로 증착된 AlN 박막의 특성)

  • Cho, In-Ho;Jang, Cheol-Yeong;Ko, Sung-Yong;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.509-512
    • /
    • 2001
  • Aluminum nitride(AlN) thin films were deposited on silicon substrates using RF magnetron sputtering at various deposition conditions and investigated the characteristics. It was used XRD, AES, SEM, and HP-4145B semiconductor parameter analyzer to analysis deposited AlN thin films. The deposition conditions for the good c-axis orientation were 100 W of RF power, $200^{\circ}C$ of substrate temperature and 15 mTorr of working pressure. The leakage current density was less then $1.3{\times}10^{-7}A/cm^{2}$. And it was also investigated the etching properties of deposited AlN thin films for application.

  • PDF

W-B-C-N 확산방지막에서 질소농도에 따른 Stress 에 대한 연구

  • So, Ji-Seop;Lee, Channg-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.72-73
    • /
    • 2005
  • Stress behavior was studied to investigate the internal behaviors of boron, carbon, and nitrogen in the 1000${\AA}$-thick tungsten boron carbon nitride (W-B-C-N) thin films. The impurities in the W-B-C-N thin films provide stuffing effects that were very effective for preventing the interdiffusion between interconnection metal and silicon substrate during the subsequent high temperature annealing process. The resistivity of W-B-C-N thin film decreases as an annealing temperature increase. The W-B-C-N thin films have compressive stress, and the stress value decreased up to $4.11\times10^{10}dyne/cm^2$ as an $N_2$ flow rate increases up to 3 sccm.

  • PDF

Characteristics of AIN thin film using RF Magnetron Sputtering (RF Magnetron Sputtering 법으로 층착된 AIN 박막의 특성)

  • 조인호;장철영;고성용;이용현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.509-512
    • /
    • 2001
  • Aluminum nitride(AIN) thin films were deposited on silicon substrates using RF magnetron sputtering at various deposition conditions and investigated the characteristics. It was used XRD, AES, SEM, and HP-4145B semiconductor parameter analyzer to analysis deposited AIN thin films. The deposition conditions for the good c-axis orientation were 100 W of RF power, 200$^{\circ}C$ of substrate temperature and 15 mTorr of working Pressure. The leakage current density was less then 1.3${\times}$10$\^$-7/ A/$\textrm{cm}^2$. And it was also investigated the etching properties of deposited AIN thin films for application.

  • PDF

Study on SiN and SiCN film production using PE-ALD process with high-density multi-ICP source at low temperature

  • Song, Hohyun;Seo, Sanghun;Chang, Hongyoung
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1436-1440
    • /
    • 2018
  • SiN and SiCN film production using plasma-enhanced atomic layer deposition (PE-ALD) is investigated in this study. A developed high-power and high-density multiple inductively coupled plasma (multi-ICP) source is used for a low temperature PE-ALD process. High plasma density and good uniformity are obtained by high power $N_2$ plasma discharge. Silicon nitride films are deposited on a 300-mm wafer using the PE-ALD method at low temperature. To analyze the quality of the SiN and SiCN films, the wet etch rate, refractive index, and growth rate of the thin films are measured. Experiments are performed by changing the applied power and the process temperature ($300-500^{\circ}C$).