DOI QR코드

DOI QR Code

Study on SiN and SiCN film production using PE-ALD process with high-density multi-ICP source at low temperature

  • Song, Hohyun (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Seo, Sanghun (R&D Center, Wintel Corp) ;
  • Chang, Hongyoung (Department of Physics, Korea Advanced Institute of Science and Technology)
  • 투고 : 2018.04.27
  • 심사 : 2018.08.24
  • 발행 : 2018.11.30

초록

SiN and SiCN film production using plasma-enhanced atomic layer deposition (PE-ALD) is investigated in this study. A developed high-power and high-density multiple inductively coupled plasma (multi-ICP) source is used for a low temperature PE-ALD process. High plasma density and good uniformity are obtained by high power $N_2$ plasma discharge. Silicon nitride films are deposited on a 300-mm wafer using the PE-ALD method at low temperature. To analyze the quality of the SiN and SiCN films, the wet etch rate, refractive index, and growth rate of the thin films are measured. Experiments are performed by changing the applied power and the process temperature ($300-500^{\circ}C$).

키워드

과제정보

연구 과제 주관 기관 : MOTIE(Ministry of Trade, Industry & Energy)

참고문헌

  1. R.W. Boswell, F.F. Chen, IEEE Trans. Plasma Sci. 25 (1997) 1229. https://doi.org/10.1109/27.650898
  2. F.F. Chen, R.W. Boswell, IEEE Trans. Plasma Sci. 25 (1997) 1245. https://doi.org/10.1109/27.650899
  3. T.P. Schneider, W.W. Dostalik, A.D. Springfield, R. Kraft, Plasma Sources Sci. Technol. 8 (1999) 397. https://doi.org/10.1088/0963-0252/8/3/309
  4. W.T. Li, R. Boswell, M. Samoe, A. Samoc, Q.H. Qin, Electron. Lett. 43 (2007) 235. https://doi.org/10.1049/el:20073668
  5. J. Asmussen, J. Vac. Sci. Technol. A 7 (1989) 883. https://doi.org/10.1116/1.575815
  6. S. Nakayama, Pure Appl. Chem. 62 (1990) 1751. https://doi.org/10.1351/pac199062091751
  7. S.X. Lao, R.M. Martin, J.P. Chang, J. Vac. Sci. Technol. A 23 (2005) 488. https://doi.org/10.1116/1.1894666
  8. A. Perros, M. Bosund, T. Sajavaara, M. Laitinen, L. Sainiemi, T. Huhtio, H. Lipsanen, J. Vac. Sci. Technol. A 30 (2011) 011504.
  9. S. Weeks, G. Nowling, N. Fuchigami, M. Bowes, K. Littau, J. Vac. Sci. Technol. A 34 (2015) 01A140.
  10. K. Schuegraf, M.C. Abraham, A. Brand, M. Naik, R. Thakur, IEEE J. Electron Devices 1 (2013) 66. https://doi.org/10.1109/JEDS.2013.2271582
  11. M. Ieong, B. Doris, J. Kedzierski, K. Rim, M. Yang, Science 306 (2004) 2057. https://doi.org/10.1126/science.1100731
  12. P.A. Keiter, E.E. Soime, M.M. Balkey, Phys. Plasmas 4 (1997) 2741. https://doi.org/10.1063/1.872142
  13. S.V. Nguyen, IBM J. Res. Dev. 43 (1999) 109. https://doi.org/10.1147/rd.431.0109
  14. S.W. King, J. Vac. Sci. Technol. A 29 (2011) 041501. https://doi.org/10.1116/1.3584790
  15. B. Hoex, J. Schmidt, P. Pohl, M.C.M. van de Sanden, W.M.M. Kessels, J. Appl. Phys. 104 (2008) 044903. https://doi.org/10.1063/1.2963707
  16. J. Schmidt, B. Veith, R. Brendel, Phys. Status Solidi R 3 (2009) 287.
  17. W.Y. Ding, J. Xu, Y. Piao, Y.Q. Li, P. Gao, X.L. Deng, C. Dong, Chin. Phys. Lett. 22 (2005) 2332. https://doi.org/10.1088/0256-307X/22/9/053
  18. J. Kailiomaki, V. Kilpi, T. Maline, H. Enami, N. Mise, H. Hamamura, T. Usui, AVS 17th International Conference of Atomic Layer Deposition, NS+EM-SuA16, 2017.
  19. H. Enami, N. Mise, H. Hamamura, T. Usui, J. Kailiomaki, V. Kilpi, T. Malinen, AVS 17th International Conference of Atomic Layer Deposition, AF2-TuM4, 2017.
  20. B. Diaz, E. Harkonen, J. Swiatowska, V. Maurice, A. Seyeux, P. Marcus, M. Ritala, Corrosion Sci. 53 (2011) 2168. https://doi.org/10.1016/j.corsci.2011.02.036
  21. L.G. Gosset, J.F. Damlencourt, O. Renault, D. Rouchon, Ph. Holliger, A. Ermolieff, I. Trimaille, J.J. Ganem, F. Martin, M.N. Semeria, J. Non-Cryst. Solids 303 (2002) 17. https://doi.org/10.1016/S0022-3093(02)00958-4
  22. D. Triyoso, R. Liu, D. Roan, M. Ramon, N.V. Edwards, R. Gregory, D. Werho, J. Kulik, G. Tam, E. Irwin, X.D. Wang, L.B. La, C. Hobbs, R. Garcia, J. Baker, B.E. White Jr., P. Tobina, J. Electrochem. Soc. 151 (2004) F220. https://doi.org/10.1149/1.1784821
  23. H.B.R. Lee, H. Kim, Electrochem. Solid State 9 (2006) G323. https://doi.org/10.1149/1.2338777
  24. C.C. Chang, F.M. Pan, J. Electrochem. Soc. 158 (2011) G97. https://doi.org/10.1149/1.3554734
  25. J. Hopwood, C.R. Guarnieri, S.J. Whitehair, J.J. Cuomo, J. Vac. Sci. Technol. A 11 (1993) 152.
  26. M.B. Hopkins, W.G. Graham, Rev. Sci. Instrum. 57 (1986) 2210. https://doi.org/10.1063/1.1138684
  27. R.L. Merlino, Am. J. Phys. 75 (2007) 1078. https://doi.org/10.1119/1.2772282
  28. M. Tuszewski, J.A. Tobin, Plasma Sources Sci. Technol. 5 (1996) 640. https://doi.org/10.1088/0963-0252/5/4/005
  29. N. Samai, H. Du, R. Luberoff, K. Chetry, R. Bubber, A. Hayes, A. Devasahayam, J. Vac. Sci. Technol. A 31 (2013) 01A137. https://doi.org/10.1116/1.4769204
  30. J.W. Smith, S.M. Seutter, R.S. Iyer, J. Vac. Sci. Technol. B 23 (2005) 2340. https://doi.org/10.1116/1.2102947
  31. M. Tanaka, S. Saida, Y. Tsunashima, J. Electrochem. Soc. 147 (2000) 2284. https://doi.org/10.1149/1.1393522
  32. J.G.E. Gardeniers, H.A.C. Tilmans, C.C.G. Visser, J. Vac. Sci. Technol. A 14 (1996) 2879. https://doi.org/10.1116/1.580239
  33. B.C. Joshi, G. Eranna, D.P. Runthala, B.B. Dixit, O.P. Wadhawan, P. D Vyas, Indian J. Eng. Mater. Sci. 7 (2000) 303.

피인용 문헌

  1. Power characteristics of multiple inductively coupled RF discharges inside a metallic chamber vol.24, pp.1, 2022, https://doi.org/10.1088/2058-6272/ac363f