• Title/Summary/Keyword: Silica-supported catalyst

Search Result 56, Processing Time 0.027 seconds

Phosphomolybdic Acid Supported on Silica Gel as an Efficient and Reusable Catalyst for Cyanosilylation of Aldehydes

  • Kadam, Santosh T.;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1320-1322
    • /
    • 2008
  • Phosphomolybdic acid supported on silica gel (PMA-$SiO_2$) is an efficient catalyst for the activation of TMSCN for the facile cyanosilylation of various aldehydes. Cyano transfer from TMSCN to aldehyde proceeds smoothly at rt in presence of 0.8 mol % of PMA-$SiO_2$ leading to a range of cyanosilylether in excellent yield (mostly over 93%) within short reaction time (30 min). The catalyst can be recovered and reused several times without loss of activity.

Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones

  • Yassaghi, Ghazaleh;Davoodnia, Abolghasem;Allameh, Sadegh;Zare-Bidaki, Atefeh;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2724-2730
    • /
    • 2012
  • A new heterogeneous acidic catalyst was successfully prepared by impregnation of silica (Aerosil 300) by an acidic ionic liquid, named 1-(4-sulfonic acid)butylpyridinium hydrogen sulfate [$PYC_4SO_3H$][$HSO_4$], and characterized using FT-IR spectroscopy, the $N_2$ adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques. The amount of loaded acidic ionic liquid on Aerosil 300 support was determined by acid-base titration. This new solid acidic supported heterogeneous catalyst exhibits excellent activity in the synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones by cyclocondensation reaction of 2-aminobenzamide with aromatic aldehydes under solvent-free conditions and the desired products were obtained in very short reaction times with high yields. This catalyst has the advantages of an easy catalyst separation from the reaction medium and lower problems of corrosion. Recycling of the catalyst and avoidance of using harmful organic solvent are other advantages of this simple procedure.

Silica Supported Tungstosilicic Acid as an Efficient and Reusable Catalyst for the One-Pot Synthesis of β-Acetamido Ketones via a Four-Component Condensation Reaction

  • Nasr-Esfahani, Masoud;Montazerozohori, Morteza;Gholampour, Tahere
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3653-3657
    • /
    • 2010
  • Silica supported tungstosilicic acid has been used as an effective catalyst for a modified Dakin-West one-pot, four-component condensation of an aryl aldehyde, an aryl ketone, acetyl chloride and acetonitrile for the synthesis of $\beta$-acetamido ketones. This catalytic system can act as an active, inexpensive, recoverable and recyclable catalyst. Some advantages of this system are short reaction times, good to excellent yields, easy work up and the ability to be carried out at the large scale reactions.

Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs2.5H0.5PMo12O40

  • Gong, Shu-Wen;Liu, Li-Jun;Zhang, Qian;Wang, Liang-Yin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1279-1284
    • /
    • 2012
  • Silica supported $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The $Cs_{2.5}H_{0.5}PMo_{12}O_{40}$ particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology.

Microwave-mediated Asymmetric Hydrogen Transfer by SBA-15-supported Ruthenium Catalyst (SBA-15 실리카에 고정화된 ruthenium 촉매를 사용한 Microwave하에서의 비대칭 수소 전달반응)

  • Jin, Myung-Jong;Jun, In-Chul
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.752-755
    • /
    • 2008
  • Mesoporous SBA-15 silica-supported TsCHDA and TsDPEN ligands have been prepared by reaction of SBA-15 silica with (1R,2R)-N-(trimethoxysilylpropyl-N-sulfonyl)-1,2-cyclohaxanediamine or (1R,2R)-N-(trimethoxysilylpropyl-N-sulfonyl)-1,2-diphenylethylenediamine-1,2-diphenylethylenediamine, respectively. The Ru complexes exhibited excellent catalytic activity and satisfactory enantioselectivity in the asymmetric hydrogen transfer of ketones under microwave conditions. The heterogeneous Ru catalyst was reusable as well as air-stable to allow easy use. Microwave-assisted efficient procedure has been developed for asymmetric hydrogen transfer.

Preparation of electro-catalysts supported on the bimodal porous carbon for polymer electrolyte fuel cell (Bimodal 다공성 탄소지지체에 담지된 고분자전해질연료전지용 전극촉매 제조)

  • Hwang, So-hee;Park, Gu-Gon;Yim, Sung-Dae;Park, Seok-Hee;Kim, Han-Sung;Yang, Tae-Hyun;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.652-655
    • /
    • 2009
  • The bimodal porous carbons were synthesized by using imprinting method with templates of SBA-15 particle and silica sphere and applied as supporting materials for the electro-catalyst of polymer electrolyte fuel cell (PEFC). The silica spheres with diameter size of 100 nm and SBA-15 particle having 200 nm -250 nm diameter and 700 nm -900 nm length were synthesized in this work. The bimodal porous carbons (S100) were prepared by using the silica spheres and SBA-15 as templates and mesophase pitch as a carbon source. The PtRu nanoparticle of ca. 1.9 nm were supported on the bimodal porous carbon support and the resulting PtRu/S100 catalysts was tested by the cyclic voltammetry. The use of bimodal porous carbon showed in comparable electro-catalytic activities with commercial catalyst. Though unclear effects of bimodal porosity of supports could be obtained in the scope of this study, morphological advantage in electrical conductivity can be considered on the electro-catalytic activity.

  • PDF

Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Using HClO4-SiO2 as a Heterogeneous and Recyclable Catalyst

  • Maheswara, Muchchintala;Oh, Sang-Hyun;Kim, Ke-Tack;Do, Jung-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.9
    • /
    • pp.1752-1754
    • /
    • 2008
  • A simple and efficient synthesis of 3,4-dihydropyrimidinones or thiones is described, using silica-supported perchloric acid ($HClO_4-SiO_2$) as a heterogeneous catalyst from an aldehyde, $\beta$-dicarbonyl compound, and urea or thiourea under solvent-free conditions. Compared to the classical Biginelli reactions, this method consistently has the advantage of high yields, short reaction time, easy separation, and tolerance towards various functional groups.

Ethylene Polymerization Using (n-BuCp)$_{2}ZrCl_{2}$ Catalyst Activated with a Cross-linked MAO-Supported Cocatalyst

  • Yoon, Keun-Byoung
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.336-341
    • /
    • 2004
  • A new type of cross-linked methylaluminoxane (MAO)-supported cocatalyst has been prepared by the reaction of a soluble MAO and a cross-liking agent such as an aromatic diamine compound. The cross-linked MAO-supported cocatalyst was used for the polymerization of ethylene in the presence of bis(n-butylcyclopentadienyl) zirconium dichloride, (n-BuCp)$_2$ZrCl$_2$. The catalyst activity of (n-BuCp)$_2$ZrCl$_2$ cocatalyzed with the new supported cocatalyst was higher than that of the commercial silica-supported MAO (SMAO) cocatalyst. The molecular weight and the bulk density of the polyethylene produced by using the new supported cocatalyst were slightly higher than those of polyethylene synthesized using commercial SMAO. The resulting polyethylene particles possess spherical morphologies with very few fine particles.

Carbon-silica composites supported Pt as catalyst for asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate

  • Mao, Cong;Zhang, Jie;Xiao, Meitian;Liu, Yongjun;Zhang, Xueqin
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1480-1485
    • /
    • 2018
  • Mesoporous carbon-silica composites supported Pt nanoparticle catalysts (Pt/MCS) were firstly applied to the heterogeneous asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate (EOPB). A series of different silica contents were investigated in the fabrication of this mesoporous material. When the volume of added tetraethyl orthosilicate (TEOS) during the preparation of composites is 8 mL, Pt/MCS-8 holds carbon and silica as the main components and possesses relatively strong acidity, mesoporous structures with micropores, appropriate Pt nanoparticle size and high dispersibility showing by XRD, XPS, TPD, $N_2$ sorption and TEM. These properties cause its good catalytic performance in the heterogeneous asymmetric hydrogenation of EOPB with the enantiomeric excess value and conversion up to 85.6% and 97.8%, respectively.