DOI QR코드

DOI QR Code

Silica Supported Tungstosilicic Acid as an Efficient and Reusable Catalyst for the One-Pot Synthesis of β-Acetamido Ketones via a Four-Component Condensation Reaction

  • Received : 2010.08.19
  • Accepted : 2010.10.07
  • Published : 2010.12.20

Abstract

Silica supported tungstosilicic acid has been used as an effective catalyst for a modified Dakin-West one-pot, four-component condensation of an aryl aldehyde, an aryl ketone, acetyl chloride and acetonitrile for the synthesis of $\beta$-acetamido ketones. This catalytic system can act as an active, inexpensive, recoverable and recyclable catalyst. Some advantages of this system are short reaction times, good to excellent yields, easy work up and the ability to be carried out at the large scale reactions.

Keywords

References

  1. Pope, M. T. In Heteropoly and Isopoly Oxometalates; Springer- Verlag: Berlin, 1983.
  2. Okuhara, T.; Mizuno, N.; Misono, M. Adv. Catal. 1996, 41, 113. https://doi.org/10.1016/S0360-0564(08)60041-3
  3. Hill, C. L. Chem. Rev. 1998, 98, 1. https://doi.org/10.1021/cr960395y
  4. Drago, R. S.; Dias, J. A.; Maier, T. O. J. Am. Chem. Soc. 1997, 119, 7702. https://doi.org/10.1021/ja9639123
  5. Dias, J. A.; Dias, S. C. L.; Kob, N. E. J. Chem. Soc., Dalton Trans. 2001, 3, 228.
  6. Dias, J. A.; Osegovic, J. P.; Drago, R. S. J. Catal. 1999, 183, 83. https://doi.org/10.1006/jcat.1998.2389
  7. Kozhhevnikov, I.V. In Catalysis for Fine Chemical Synthesis, Catalysis by Polyoxometalates 2; Derouane, E., Ed.; Wiley: New York, 2002.
  8. Romanelli, G. P.; Bennardi, D.; Ruiz, D. M.; Baronetti, G.; Thomas, H. J.; Autino, J. C. Tetrahedron Lett. 2004, 45, 8935. https://doi.org/10.1016/j.tetlet.2004.09.183
  9. Firouzabadi, H.; Iranpoor, N.; Amani, K. Synthesis 2003, 408.
  10. Kaur, J.; Griffin, K.; Harrison, B.; Kozhevnikov, I. V. J. Catal. 2002, 208, 448. https://doi.org/10.1006/jcat.2002.3592
  11. Lan, K.; Fen, S.; Shan, Z.-X. Aust. J. Chem. 2007, 60, 80. https://doi.org/10.1071/CH06277
  12. Azizi, N.; Torkiyan, L.; Saidi, M. R. Org. Lett. 2006, 8, 2079. https://doi.org/10.1021/ol060498v
  13. Rasalkar, M. S.; Bhilare, S. V.; Deorukhkar, A. R.; Darvatkar, N. B.; Salunkhe, M. M. Can. J. Chem. 2007, 85, 77. https://doi.org/10.1139/V06-176
  14. Wang, E.; Huang, T.-K.; Shi, L.; Li, B.-G.; Lu, X.-X. Synlett 2007, 2197.
  15. Firouzabadi, H.; Iranpoor, N.; Jafari, A. A. J. Organomet. Chem. 2005, 690, 1556. https://doi.org/10.1016/j.jorganchem.2004.12.025
  16. Azizi, N.; Saidi, M. R. Tetrahedron 2007, 63, 888. https://doi.org/10.1016/j.tet.2006.11.045
  17. Dias, A. S.; Lima, S.; Pillinger, M.; Valente, A. A. Carbohydr. Res. 2006, 341, 2946. https://doi.org/10.1016/j.carres.2006.10.013
  18. Kozhevnikov, I. V.; Sinnema, A.; Jansen, R. J. J.; Pamin, K.; Van Bekkum, H. Catal. Lett. 1995, 30, 241. https://doi.org/10.1007/BF00813690
  19. Moffat, J. B. In Metal-Oxygen Cluster-The Surface and Catalytic Properties of Heteropoly Oxometalates; Kluwer: New York, 2001; p 25.
  20. Kozhevnikov, I. V.; Kloetstra, K. R.; Sinnema, A.; Zandbergen, H. W.; van Bekkum, H. J. Mol. Catal. A: Chem. 1996, 114, 287. https://doi.org/10.1016/S1381-1169(96)00328-7
  21. Rafiee, E.; Shahbazi, F. J. Mol. Catal. A: Chem. 2006, 250, 57. https://doi.org/10.1016/j.molcata.2006.01.049
  22. Torviso, M. R.; Alesso, E. N.; Moltrasio, G. Y.; Vazquez, P. G.; Pizzio, L. R.; Caceres, C.V.; Blanco, M. N. Appl. Catal. A 2006, 301, 25. https://doi.org/10.1016/j.apcata.2005.11.017
  23. Rafiee, E.; Rashidzadeh, S.; Azad, A. J. Mol. Catal. A: Chem. 2006, 261, 49. https://doi.org/10.1016/j.molcata.2006.07.058
  24. Zhang, F. M.; Wang, J.; Yuan, C. S.; Ren, X. Q. Catal. Lett. 2005, 102, 171. https://doi.org/10.1007/s10562-005-5851-9
  25. Izumi, Y.; Hisano, K.; Hida, T. Appl. Catal. A 1999, 181, 277. https://doi.org/10.1016/S0926-860X(98)00399-8
  26. Casimir, J. R.; Turetta, C.; Ettouati, L.; Paris, J. Tetrahedron Lett. 1995, 36, 4797.
  27. Godfrey, A. G.; Brooks, D. A.; Hay, L. A.; Peters, M.; McCarthy, J. R.; Mitchell, D. J. Org. Chem. 2003, 68, 2623. https://doi.org/10.1021/jo026655v
  28. Mukhopadhyay, M.; Bhatia, B.; Iqbal, J. Tetrahedron Lett. 1997, 38, 1083. https://doi.org/10.1016/S0040-4039(96)02474-4
  29. Barluenga, J.; Viado, A. L.; Aguilar, E.; Fustero, S.; Olano, B. J. Org. Chem. 1993, 58, 5972. https://doi.org/10.1021/jo00074a024
  30. Enders, D.; Moser, M.; Geibel, G.; Laufer, M. C. Synthesis 2004, 2040.
  31. Kobinata, K.; Uramoto, M.; Nishii, M.; Kusakabe, H.; Nakamura, G.; Isono, K. Agric. Biol. Chem. 1980, 44, 1709. https://doi.org/10.1271/bbb1961.44.1709
  32. Daehn, U.; Hagenmaier, H.; Hoehne, H.; Koenig, W. A.; Wolf, G.; Zaehner, H. Arch. Microbiol. 1976, 107, 249. https://doi.org/10.1007/BF00425335

Cited by

  1. ChemInform Abstract: Silica Supported Tungstosilicic Acid as an Efficient and Reusable Catalyst for the One-Pot Synthesis of β-Acetamido Ketones (IV) via a Four-Component Condensation Reaction vol.42, pp.16, 2011, https://doi.org/10.1002/chin.201116069
  2. Applications of heteropoly acids in multi-component reactions vol.11, pp.1, 2014, https://doi.org/10.1007/s13738-013-0291-8
  3. Magnetic nanoparticles-supported tungstosilicic acid: as an efficient magnetically separable solid acid for the synthesis of benzoazoles in water vol.11, pp.5, 2014, https://doi.org/10.1007/s13738-013-0400-8
  4. Selective Catalytic Methylation of Phloroglucinol with Dimethyl Carbonate in the Presence of Heterogeneous Acids pp.1434193X, 2018, https://doi.org/10.1002/ejoc.201801112
  5. Vanadatesulfuric Acid: A Novel, Recyclable, and Heterogeneous Catalyst for the One-Pot Synthesis of Dihydropyrimidinones and Dihydropyrimidinthiones Under Solvent-Free Conditions vol.188, pp.5, 2013, https://doi.org/10.1080/10426507.2012.694001
  6. Tungstophosphoric acid nanoparticles supported on polyamic acid: A mild and recoverable heterogeneous catalyst for the selective synthesis of mono and bulky bis(1,8-dioxooctahydroxanthene)s under solv vol.191, pp.5, 2010, https://doi.org/10.1080/10426507.2015.1100185