• Title/Summary/Keyword: Silica-coated nanoparticles

Search Result 44, Processing Time 0.031 seconds

PDMS (Polydimethylsilioxane)-Coated Silica Nanoparticles for Selective Removal of Oil and Organic Compound from Water

  • Cho, Youn Kyoung;Kim, Dae Han;Yoon, Hye Soo;Jeong, Bora;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.257-257
    • /
    • 2013
  • In order to selectively remove oil and organic compound from water, silica nanoparticles with hydrophobic coating was used. Since silica nanoparticles are generally hydrophilic, removal efficiency of oil and organic compound, such as toluene, in water can be decreased due to competitive adsorption with water. In order to increase the removal efficiency of oil and toluene, hydrophobic polydimethylsiloxane (PDMS) was coated on silica nanoparticles in the form of thin film. Hydrophobic property of the PDMS-coated silica nanoparticles and hydrophilic silica nanoparticles were easily confirmed by putting it in the water, hydrophilic particle sinks but hydrophobic particle floats. PDMS coated silica nanoparticles were dispersed on a slide glass with epoxy glue on and the water contact angle on the surface was determined to be over $150^{\circ}$, which is called superhydrophobic. FT-IR spectroscopy was used to check the functional group on silica nanoparticle surface before and after PDMS coating. Then, PDMS coated silica nanoparticles were used to selectively remove oil and toluene from water, respectively. It was demonstrated that PDMS coated nanoaprticles selectively aggregates with oil and toluene in the water and floats in the form of gel and this gel remained floating over 7 days. Furthermore, column filled with hydrophobic PDMS coated silica nanoparticles and hydrophilic porous silica was prepared and tested for simultaneous removal of water-soluble and organic pollutant from water. PDMS coated silica nanoparticles have strong resistibility for water and has affinity for oil and organic compound removal. Therefore PDMS-coated silica nanoparticles can be applied in separating oil or organic solvents from water.

  • PDF

Efficient Labeling of Porcine Hematopoietic Cells by Fluorescence-Conjugated Nanoparticles

  • Lee, Hyun-Joo;Park, Eun-Ji;Lee, Yong-Soo;Park, Sung-Won;Kim, Jae-Hwan;Kim, Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.175-180
    • /
    • 2010
  • Nanotechnology is currently receiving considerable attention in various fields of biotechnology. The uptake of nanoparticles by cells for labeling and tracking is a critical process for many biomedical therapeutic applications. However, nanoparticle labeling of porcine hematopoietic cells has not been demonstrated so far. In the present study, silica-coated nanoparticles conjugated with rhodamine B isothiocyanate (SR-RITC) were used to investigate the uptake of nanoparticles by porcine hematopoietic cells. Flow cytometric and confocal microscopic analyses reveled that the cells were efficiently internalized by the silica-coated nanoparticles. Furthermore, biocompatibility tests demonstrated that the SR nanoparticles were not cytotoxic, and they had no impact on proliferation. Our study demonstrates that silica-coated nanoparticles are taken up very rapidly and with high efficiency into porcine hematopoietic cells, with no apparent deleterious effects. Therefore, silica-coated nanoparticles appear to be a promising tool for tracking porcine hematopoietic cells.

Polyamine Group Assembled Silica Coated Ferrite Nanoparticle for Lambda DNA Detection

  • Park, Moo-Eon;Chang, Jeong-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1193-1194
    • /
    • 2006
  • The magnetic ferrite nanoparticles were synthesized and coated by silica precursor in controlling the coating thicknesses and sizeses. The surface modification was performed with amino-functionalized organic silanes on silica coated magnetic nanoparticles. The use of functionalized self-assembled magnetic ferrite nanoparticles for nucleic acid separation process give a lot of advantages rather than the conventional silica based process.

  • PDF

Flame Synthesis of Silica-Coated Iron Oxide Nanoparticles and Their Characterization

  • Jun, Kimin;Yang, Sangsun;Lee, Jeonghoon;Pikhitsa, Peter V.;Choi, Mansoo
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.209-219
    • /
    • 2013
  • We have used the modified diffusion flame burner to synthesize silica coated iron oxide nanoparticles having enhanced superparamagnetic property. Silica-encapsulated iron oxide particles were directly observed using a high resolution transmission electron microscope. From the energy dispersive X-ray spectroscopy (EDS) and zeta potential measurements, the iron oxide particles were found to be completely covered by a silica coating layer. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) measurements revealed that the iron oxide core consists of ${\gamma}-Fe_2O_3$ rather than ${\alpha}-Fe_2O_3$. Our magnetization measurements support this conclusion. Biocompatibility test of the silica-coated iron oxide nanoparticles is also conducted using the protein adsorption onto the coated particle.

Antimicrobial Fiber Products Treated with Silica Hybrid Ag Nanoparticles

  • Kim, Hwa-Jung;Park, Hae-Jin;Choi, Seong-Ho;Park, Hae-Jun
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • Silica hybrid silver nanoparticles showing the strong antimicrobial activity, in which nano-silver is bound to silica molecules, has been synthesized using ${\gamma}-irradiation$ at room temperature. The present study relates to an antimicrobial composition for coating fiber products comprising silica hybrid silver nanoparticles. In this study, we describe antimicrobial fiber products coated with the silica hybrid silver nanoparticles and a method of antimicrobially treating fiber products by coating the fiber products with the silica hybrid silver nanoparticles. The antimicrobial fiber products exhibited excellent antimicrobial effects. In detailed practice, when the present composition comprising nanosized silica-silver was applied to a cloth (fabric) in a concentration of $6.4mg\;yard^{-1}$, the viable cell number decreased to less than 10 cells before and after laundering, resulting in a reduction of 99.9% or greater in the viable cell number. The present composition displays long-lasting potent disinfecting effects on bacteria. Also, we investigated the toxicity of silica hybrid silver nanoparticles in rats. The skin of rats was treated with a 30 ppm nanoparticles solution ($2ml\;Kg^{-1}$) for 8 days. No toxicity was detected in the treatment. These results suggest that the fiber products coated with the silica hybrid silver nanoparticles can be used to inhibit the growth of various microorganisms.

Fabrication and Characterization of Silica Coated Fe3O4 Nanoparticles in Reverse Micro Emulsion (마이크로에멀젼법을 이용하여 실리카 코팅된 나노 Fe3O4 분말의 합성과 분석연구)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Hwang, Kwang-Taek;Yang, Hee-Seung;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.113-116
    • /
    • 2010
  • The silica coated $Fe_3O_4$ nanoparticles have been synthesized using a micro-emulsion method. The $Fe_3O_4$ nanoparticles with the sizes 6 nm in diameter were synthesized by thermal decomposition method. Hydrophobic $Fe_3O_4$ nanoparticles were coated silica using surfactant and tetraethyl orthosilicated (TEOS) as a $SiO_2$ precursor. Shell thickness of silica coated $Fe_3O_4$ can be controlled (11~20 nm) through our synthetic conditions. The $Fe_3O_4$ and silica coated $Fe_3O_4$ nano powders were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and vortex magnetic separation (VMS).

Double Convective Assembly Coatings of FePt Nanoparticles to Prevent Particle Coalescence during Annealing

  • Hwang, Yeon
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.156-160
    • /
    • 2011
  • FePt nanoparticles suspension was synthesized by reduction of platinum acetylacetonate and decomposition of iron pentacarbonyl in the presence of oleic acid and oleyl amine. FePt nanoparticles were coated on a substrate by convective assembly from the suspension. To prevent the coalescence during the annealing of FePt nanoparticles double convective coatings were tried. First convective coating was for silica particle assembly on a silicon substrate and second one was for FePt nanoparticles on the previously coated silica layers. It was observed by scanning electron microscopy (SEM) that FePt nanoparticles were dispersed on the silica particle surface. After annealing at $700^{\circ}C$ for 30 minutes under nitrogen atmosphere, FePt nanoparticles on silica particles were maintained in a dispersed state with slight increase of particle size. On the contrary, FePt nanoparticles that were directly coated on silicon substrate showed severe particle growth after annealing due to the close-packing of nanoparticles during assembly. The size variation during annealing was also verified by X-ray diffractometer (XRD). It was suggested that pre-coating, which offered solvent flux oppose to the capillary force between FePt nanoparticles, was an effective method to prevent coalescence of nano-sized particles under high temperature annealing.

Effect of functional group on activity and stability of lipase immobilized on silica-coated magnetite nanoparticles with different functional group (실리카 코팅된 자성 나노입자로의 효소 고정화에 사용된 작용기가 리파아제의 활성과 안정성에 미치는 영향)

  • Lee, Hye Rin;Kim, Moon Il;Hong, Sang Eun;Choi, Jaeyeong;Kim, Young Min;Yoon, Kuk Ro;Lee, Seungho;Ha, Sung Ho
    • Analytical Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.105-113
    • /
    • 2016
  • The present study investigated the immobilization of lipases on silica nanoparticles and silica-coated magnetite nanoparticles as supports with a functional group to enhance the stability of lipase. The influence of functional groups, such as the epoxy group and the amine group, on the activity and stability of immobilized lipase was also studied. The epoxy group and the amino group were introduced onto the surface of nanoparticles by glycidyl methacrylate and aminopropyl triethoxysilane, respectively. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles with a functional group showed slightly lower initial enzyme activities than free enzyme; however, the immobilized Candida rugosa lipase retained over 92 % of the initial activity, even after 3 times reuse. Lipase was also immobilized on the silica-coated magnetite nanoparticles by cross-linked enzyme aggregate (CLEA) using glutaraldehyde and covalent binding, respectively, were also studied. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles by CLEA and covalent binding showed higher enzyme activities than free enzyme, while immobilized Candida rugosa lipase retained over 73 % of the initial activity after 5 times reuse.

Changes in the Moisture Stability of $CaS:Eu^{2+}$ Phosphors with Surface Coating Methods

  • Yoo, Sun-Hwa;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.907-911
    • /
    • 2009
  • To improve the moisture stability of the $CaS:Eu^{2+}$ red phosphor, surface coatings with silica nanoparticles were performed using five different methods, i.e., $P_1$, $P_2$, $P_3$, $P_4$, and $P_5$. The phosphors were coated with silica nanoparticles using a dip coating method ($P_1$) and sol-gel method ($P_2$). The phosphors were coated using a solution containing silica nanoparticles and poly(1-vinyl-2-pyrrolidone), PVP, $(P_3$). The phosphors were also coated with silica nanoparticles by reacting with the 1-vinyl-2-pyrrolidone (VP) monomer ($P_4$) or by reacting with mixtures containing VP and tetraethylorthosilicate ($P_5$). A decrease in the photoluminescence (PL) intensity was observed regardless of the coating methods. However, the moisture stability of the phosphors was enhanced by the coating when aged in a temperature-controlled humidity chamber. Among these methods, the $P_4$ (or $P_5$) method exhibited the greatest increase in moisture stability of the phosphors. The coated phosphors showed a relatively constant intensity with aging time, whereas the uncoated phosphor showed a decrease.

Preparation and Characterization of Spherical Silica-coated Ceria Nanoparticles by Sol-Gel Method

  • Ahn, Yang-Kyu;Jeoung, Hae-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.96-96
    • /
    • 2010
  • Monodispersed spherical silica-coated ceria nanoparticles were prepared through a sol-gel process using tetraethylorthosilicate (TEOS) and ceria fine particles. In this process, ceria fine particles were also prepared from cerium nitrate. The mean size of ceria particles was 300nm. Silica nanoparticles with narrow particle size distribution were prepared by controlled hydrolysis of TEOS solution. The silica sols were obtained by peptization, the process of redispersing a coagulated colloid, and were coated on ceria particles by the control of the weight ratio of silica/ceria and the pH of the mixture in aqueous solution. The morphologies of particles were characterized with scaning electron microscopy(SEM), transmission electron microscopy(TEM) and atomic force microscopy(AFM). The coating thickness of silica particles obtained by using this method was controlled in the range of 30 - 70nm.

  • PDF