• Title/Summary/Keyword: Silica thickness

Search Result 159, Processing Time 0.039 seconds

A Study on the Synthesis and Properties of Additives Coated BaTiO3 (첨가제가 Coating된 BaTiO3의 합성 및 특성에 관한 연구)

  • Park, Jae-Sung;Kim, Young-Tae;Hur, Kang-Heon;Han, Young-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.189-199
    • /
    • 2009
  • The Powder characteristics and sintering behavior of $SiO_2$ coated $BaTiO_3$ were studied. $BaTiO_3$ powders were synthesized by the liquid mix method developed by Pechini, and silica coating was prepared by alkoxide hydrolysis method with TEOS and ethanol. The particle size of the $BaTiO_3$ powders was 35 nm and the thickness of the $SiO_2$ coating layer was 5 nm. As the $SiO_2$ content increased, the $SiO_2$ layers improved the powder dispersion by increasing electrostatic repulsion between the $BaTiO_3$ particles. Effects of MgO coating on microstructure and dielectric properties of $BaTiO_3$ have been studied compared with mechanically MgO mixed $BaTiO_3$. MgO coated $BaTiO_3$ particles were prepared by a homogeneous precipitation method using $MgCl_2\cdot 6H_2O$ and urea. MgO coated $BaTiO_3$ exhibited homogeneous microstructure compared with mixed samples. XRD analysis revealed that Mg substitution for the Ti site in the MgO mixed sample was much greater than in the coated one. Electrical properties of MgO mixed and coated $BaTiO_3$ were affected by the diffusion behavior of Mg in $BaTiO_3$ lattice.

The Effect of Mixing Ratio of Blast Furnace Slag and Fly Ash on Material Properties of 80MPa High Strength Concrete with Ternary Cement (고로슬래그와 플라이애시 대체율이 80MPa 3성분계 고강도콘크리트의 재료물성에 미치는 영향)

  • Lee, Bum-Sik;Jun, Myoung-Hoon;Lee, Do-Heun
    • Land and Housing Review
    • /
    • v.3 no.3
    • /
    • pp.287-297
    • /
    • 2012
  • To develop 80MPa-high strength concrete with ternary cement used in OPC, blast-furnance slag, and fly ash, mixing ratio of blast-furnace slag and fly ash was evaluated in material characteristics before and after hardening of the high strength concrete. According to the evaluated results of material characteristics before and after hardening of the high strength concrete, the flowability and long-term compressive strength increase up to 30% mixing ratio of blast-furnace slag and fly ash. Also, it is superior to characteristics of length change and neutralization due to the use of mineral admixture when compared in test sample mixed with OPC. The evaluated results show that material characteristics of the high strength concrete was the most outstanding performance at blast-furnace slag of 25% and fly ash of 15%. The result of this study will be useful for the development of high strength concrete as a substitute of costly silica fume in the near future.

Chemical and Physical Influence Factors on Performance of Bentonite Grouts for Backfilling Ground Heat Exchanger (지중 열교환기용 벤토나이트 그라우트의 시공성에 대한 화학적, 물리적 영향 요소에 관한 연구)

  • Lee, Chul-Ho;Gil, Hu-Jeong;Lee, Kang-Ja;Choi, Hang-Seok;Choi, Hyo-Pum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1475-1486
    • /
    • 2008
  • Bentonite-based grouting has been popularly used to seal a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because its high swelling potential. However, if the bentonite-based grouting is conducted in coastal areas, the salinity of groundwater changes in the mineral fabric of bentontie. In order words, an increase of cation concentration in groundwater leads to a reduction in the diffuse double-layer thickness in the bentonite mineral structure, and thus the volume of bentointe-based grouts will decrease proportional to the salinity of groundwater. In this paper, the effect of salinity (i.e., NaCl 0.5M, 0.25M, and 0.1M) on the change of swelling potential for bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, in case of using addictives such as a silica sand to increase the thermal conductivity of bentonite-based grouts, the possibility of particle segregation has been studied considering the viscosity of grouts and salinity of groundwater.

  • PDF

A novel barium oxide-based Iraqi sand glass to attenuate the low gamma-ray energies: Fabrication, mechanical, and radiation protection capacity evaluation

  • Al-Saeedi, F.H.F.;Sayyed, M.I.;Kapustin, F.L.;Al-Ghamdi, Hanan;Kolobkova, E.V.;Tashlykov, O.L.;Almuqrin, Aljawhara H.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3051-3058
    • /
    • 2022
  • In the present work, untreated Iraqi sand with grain sizes varied between 100 and 200 ㎛ was used to produce a colored glass sample that has shielding features against the low gamma-ray energy. Therefore, a weight of 70-60 wt % sand was mixed with 9-14 wt% B2O3, 8-10 wt% Na2O, 4-6 wt% of CaO, 3-6 wt% Al2O3, in addition to 0.3% of Co2O3. After melting and annealing the glass sample, the X-ray diffraction spectrometry was applied to affirm the amorphous phase of the fabricated glass samples. Moreover, the X-ray dispersive energy spectrometry was used to measure the chemical composition, and the MH-300A densimeter was applied to measure the fabricated sample's density. The Makishima-Makinzie model was applied to predict the mechanical properties of the fabricated glass. Besides, the Monte Carlo simulation was used to estimate the fabricated glass sample's radiation shielding capacity in the low-energy region between 22.1 and 160.6 keV. Therefore, the simulated linear attenuation coefficient changed between 10.725 and 0.484 cm-1, raising the gamma-ray energy between 22.1 and 160.6 keV. Also, other shielding parameters such as a half-value layer, pure lead equivalent thickness, and buildup factors were calculated.

Investigation on the Characteristics of Interfacial Transition Zone (ITZ) of High-Strength Cement Mortar Incorporating Graphene Oxide (그래핀 옥사이드 혼입 고강도 시멘트 모르타르의 Interfacial Transition Zone (ITZ) 특성에 관한 연구)

  • Im, Su-Min;Cho, Seong-Min;Liu, Jun-Xing;Lim, Seungmin;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.343-350
    • /
    • 2022
  • In recent years, nanomaterials, such as nano-silica, carbon nanotubes, and graphene oxide (GO), have been suggested to improve the properties of the interfacial transition zone (ITZ) between aggregates and cement pastes, which has most adversely affected the strength of quasi-brittle concrete. Among the nanomaterials, GO with superior dispersibility has been reported to be effective in improving the properties of ITZ of normal-strength concrete by forming interfacial chemical bonds with Ca2+ ions abundant in ITZ. In this study, the effect of GO on the properties of ITZ in the high-strength mortar was elucidated by calculating the change in hydration heat release, ITZ thickness, and the porosity around ISO sand, which was obtained with isothermal calorimetry tests and scanning electron microscope image analysis, respectively.

Experimental and numerical studies of concrete bridge decks using ultra high-performance concrete and reinforced concrete

  • Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.407-418
    • /
    • 2022
  • This paper numerically investigates the effect of changes in the mechanical properties (displacement, strain, and stress) of the ultra-high-performance concrete (UHPC) without rebar and the reinforced concrete (RC) using steel re-bars. This reinforced concrete is mostly used in the concrete bridge decks. A mixture of sand, gravel, cement, water, steel fiber, superplasticizer, and micro silica was used to fabricate UHPC specimens. The extended finite element method as used in the ABAQUS software is applied for considering the mechanical properties of UHPC, RC, and ordinary concrete specimens. To calibrate the ABAQUS, some experimental tests have been carried out in the laboratory to measure the direct tensile strength of UHPC by the compressive-to-tensile load converting (CTLC) device. This device contains a concrete specimen and is mounted on a universal tensile testing apparatus. In the experiments, three types of mixed concrete were used for UHPC specimens. The tensile strength of these specimens ranges from 9.24 to 11.4 MPa, which is relatively high compared with ordinary concrete specimens, which have a tensile strength ranging from 2 to 5 MPa. In the experimental tests, the UHPC specimen of size 150×60×190 mm with a central hole of 75 mm (in diameter)×60 mm (in thickness) was specially made in the laboratory, and its direct tensile strength was measured by the CTLC device. However, the numerical simulation results for the tensile strength and failure mechanism of the UHPC were very close to those measured experimentally. From comparing the numerical and experimental results obtained in this study, it has been concluded that UHPC can be effectively used for bridge decks.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

Ablation Behavior of ZrB2-SiC UHTC Composite under Various Flame Angle Using Oxy-Acetylene Torch (산소-아세틸렌 토치의 조사각이 ZrB2-SiC UHTC 복합체 삭마 특성에 미치는 영향)

  • Seung Yong Lee;Jung Hoon Kong;Jung Hwan Song;Young Il Son;Do Kyung Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.553-559
    • /
    • 2022
  • In this work, the ablation behavior of monolith ZrB2-30 vol%SiC (Z30S) composites were studied under various oxy-acetylene flame angles. Typical oxidized microstructures (SiO2/SiC-depleted/ZrB2-SiC) were observed when the flame to Z30S was arranged vertically. However, formation of the outmost glassy SiO2 layer was hindered when the Z30S was tilted. The SiC-depleted region was fully exposed to air with reduced thickness when highly tilted. Traces of the ablated and island type SiO2 were observed at intermediate flame angles, which clearly verified the effect of flame angle on the ablation of the SiO2 layer. Furthermore, the observed maximum surface temperature of the Z30S gradually increased up to 2,200 ℃ proving that surface amorphous silica was continuously removed while monoclinic ZrO2 phase began to be exposed. A proposed ablation mechanism with respect to flame angles is discussed. This observation is expected to contribute to the design of complex-shaped UHTC applications for hypersonic vehicles and re-entry projectiles.

Development of High Functional Black Resin Coated Electrogalvanized Steel Sheet for Digital TV Panel

  • Jo, Du-Hwan;Kwon, Moonjae;Lee, Jae-Hwa;Kang, Hee-Seung;Jung, Yong-Gyun;Song, Yon-Kyun;Jung, Min-Hwan;Cho, Soo-Hyoun;Cho, Yeong-Bong;Cho, Myoung-Rae;Cho, Byoung-Chon;Lim, Kwangsoo;Seon, Pan-Woo;Han, Hyeon-Soop;Jeong, Hwon-Woo;Lee, Jae-Ryung;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Recently Digital TV industry has drastically been moving the illuminating system, which causes an obvious product change from PDP and LCD to LED model to provide high-definition image. Due to strong competition in the digital industry, TV manufacturers make a great efforts to reduce production cost by using low-priced materials such as steels instead of aluminum and plastic etc. In this paper we have developed a new low-priced electrogalvanized steel sheet, which has a black resin composite layer, to substitute conventional high-priced PCM steel and plastic mold for rear cover panel in the digital TV. The black resin composite was prepared by mechanical dispersion of the mixture solution that consists of high solid polyester resin, melamine hardener, black pigment, micronized silica paste, polyacrylate texturing particle and miscellaneous additives. The composite solution was coated on the steel sheet using roll coater followed by induction furnace curing and cooling. Although the coated layer has a half thickness compared to the conventional PCM steels having $23{\mu}m$ thickness, it exhibits excellent quality for the usage of rear cover panel. The new steel sheet was applied to test products to get quality certification from worldwide electronic appliance customers. Detailed discussion provides in this paper including preparation of composite solution, roll coating technology, induction curing technology and quality evaluation from customers.

Analysis of Heat Transfer Characteristics on Multi-layer Insulating Curtains Coated with Silica Aerogel (실리카 에어로겔이 흡착된 다겹보온커튼의 전열 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2019
  • The multi-layer insulating curtains used in the experiment was produced in six combinations using non-woven fabric containing aerogel and compared and analyzed by measuring heat flux and heat perfusion rates due to weight, thickness and temperature changes. Using silica aerogel, which have recently been noted as new material insulation, this study tries to produce a new combination of multi-layer insulating curtains that can complement the shortcomings of the multi-layer insulating curtains currently in use and maintain and improve its warmth, and analyze the thermal properties. The heat flux means the amount of heat passing per unit time per unit area, and the higher the value, the more heat passing through the multi-layer insulating curtain, and it can be judged that the heat retention is low. The weight and thickness of multi-layer insulation curtains were found to be highly correlated with thermal insulation. In particular, insulation curtains combined with aerogel meltblown non-woven fabric had relatively higher thermal insulation than insulation curtains with the same number of insulation materials. However, the aerogel meltblown non-woven fabric is weak in light resistance and durability, and there is a problem that the production process and aerogel are scattering. In order to solve this problems, the combination of expanded aerogel non-woven fabric and hollow fiber non-woven fabric, which are relatively simple manufacturing processes and excellent warmth, are suitable for use in real farms.