• Title/Summary/Keyword: Silica sand

Search Result 239, Processing Time 0.023 seconds

Effects of Dolomite Fine Aggregate and Cement-Based Materials on Viscosity Characteristics, Flow and Flow Time of High-Strength Grout (돌로마이트 잔골재와 시멘트계 재료의 용적 구성비가 고강도 그라우트의 점도 특성, 플로우 및 유하시간에 미치는 영향)

  • Jeong, Min-Gu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.197-198
    • /
    • 2023
  • This study was conducted as part of research and development of high-strength grout. Accordingly, dolomite aggregate was used as a filler incorporated into the high-strength grout. Dolomite aggregate has a disadvantage of increasing the viscosity of the grout due to higher generation of fine powder than other aggregates. Accordingly, in this experiment, it was confirmed that the viscosity, flow time, and flow of high-strength grout change according to the volume composition ratio of dolomite aggregate and cement-based material. All experiments were conducted based on the Korean Industrial Standard KS F 4044, and the mixing factor was applied according to the composition ratio of the binder and the filler. In the experiment, the amount of fine powder contained in the dolomite aggregate rather than the silica sand used in the past is grasped, and after mixing with the grout accordingly, the mixture is proceeded to measure the viscosity in an unhardened state. In addition, the flow and flow time of the grout are evaluated according to the viscosity. As a result of the experiment, it was confirmed that the viscosity and flow time decreased and the flow increased as the volume composition ratio of the dolomite aggregate to the cement-based material increased.

  • PDF

Post-Thermal Exposure Bond Strength Properties of CFRP and GFRP in Concrete (콘크리트 고온 가열 이후 CFRP와 GFRP의 부착강도 특성)

  • Kim, Ju-Sung;Jeong, Su-Mi;Kim, Young-Jin;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.509-517
    • /
    • 2023
  • The surge in FRP(Fiber Reinforced Plastic) research signifies the industry's pursuit to counteract the longstanding issue of rebar corrosion. Notably, Carbon Fiber Reinforced Plastic(CFRP) emerges as a commendable alternative, given its superior resistance to both corrosion and chemical interactions, thus positing itself as a potential replacement for traditional steel rebars. However, the layered composition of fibers and resin in CFRP flags a notable susceptibility to elevated temperatures. Despite its promise, comprehensive studies elucidating the full spectrum of CFRP properties remain ongoing. In this investigative study, we meticulously assessed the bond strength of CFRP post-exposure to high thermal conditions. Our findings underscored a parity in bond strength amongst silica sand-coated CFRP, rib-type CFRP, and Glass Fiber Reinforced Plastic(GFRP).

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi;Masoud Soltani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.349-362
    • /
    • 2024
  • High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

A Case of Accelerated Silicosis Mimicking Miliary Pulmonary Tuberculosis (속립성 결핵과 감별이 필요했던 가속형 규폐증 1례)

  • Kim, Kwang Hyun;Kim, Sang-Ha;Kwon, Woo Cheol;Lee, Myong Kyu;Choi, Hoon;Lee, Nak Won;Hong, Tae Won;Yong, Suk Joong;Shin, Kye Chul;Jung, Soon Hee;Lee, Won Yeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.6
    • /
    • pp.684-689
    • /
    • 2005
  • Silicosis is a chronic fibrosing lung disease that is initiated by prolonged and extensive exposure to respirable free crystalline silica. Accelerated silicosis is rare and is clinically identical to the classic form of silicosis with the exception that the time from initial exposure to the onset of the disease is shorter and the rate of disease progression is dramatically faster. We describe a case of accelerated silicosis, which mimicked miliary pulmonary tuberculosis. The patient had worked in a mine coal for a period of 9 years. Subsequently, he worked in construction dealing with cement and sand for 14 years until he visited this clinic. The clinical course was notable for the rapid progression of the radiological features of silicosis over a period of 2 months. Polarizing light microscopic studies of the biopsied specimens by a transbronchial lung biopsy showed polarizing particles, which were typical of silica. To the best of our knowledge, this is the first case report of accelerated silicosis in Korea.

A Study on the Effect of Grain Content and Size on Mechanical Properties of Artificial Sedimentary Rocks (인공 퇴적암의 모래입자 크기와 함량이 역학적 성질에 미치는 영향에 관한 연구)

  • Byun, Hoon;Fereshtenejad, Sayedlireza;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.156-169
    • /
    • 2018
  • The relationship between the mechanical and textural properties of sedimentary rocks has been studied for decades. However, inconsistencies in the results have arisen from both the inhomogeneity of natural rocks and the difficulties encountered in controlling just one textural factor of interest in each experiment. This work produced artificial sedimentary rocks to enable control of every independent parameter at all times. Their homogeneity lowered the deviation of the results, and thus they produced clearer correlations than for natural rocks. The samples were made by mixing bassanite powder with water and silica sand, which produced rocks consisting of sand and gypsum cement. The effect of grain content and size on mechanical properties such as uniaxial compressive strength, Young's modulus, and seismic velocity was estimated. Increasing grain content lowered the compressive strength but raised Young's modulus and seismic velocity. Overall, grain size did not linearly affect the mechanical properties of the samples, but affected them in some way. In future, these results can be compared and integrated with similar experiments using different cement or grain types. This should allow comparison of the effects of the rock constituents themselves and their interactions, with applicability to all kinds of sedimentary rocks.

Evaluation of Compaction and Thermal Characteristics of Recycled Aggregates for Backfilling Power Transmission Pipeline (송배전관로 되메움재로 활용하기 위한 국내 순환골재의 다짐 및 열적 특성 평가)

  • Wi, Ji-Hae;Hong, Sung-Yun;Lee, Dae-Soo;Park, Sang-Woo;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.17-33
    • /
    • 2011
  • Recently, the utilization of recycled aggregates for backfilling a power transmission pipeline trench has been considered due to the issues of eco-friendly construction and a lack of natural aggregate resource. It is important to identify the physical and thermal properties of domestic recycled aggregates that can be used as a backfill material. This paper evaluated thermal properties of concrete-based recycled aggregates with various particle size distributions. The thermal properties of the recycled aggregates and river sand provided by local vendors were measured using the transient hot wire method and the transient needle probe method after performing the standard compaction test. The needle probe method considerably overestimated the thermal resistivity of recycled aggregates especially at the dry of optimum water content because of experiencing disturbance while the needle probe is being inserted into the specimen. Similar to silica sand, the thermal resistivity of recycled aggregates decreased when the water content increased at a given dry density. Also, this paper evaluated some of the existing prediction models for the thermal resistivity of recycled aggregates with the experimental data, and developed a new prediction model for recycled aggregates. This study shows that recycled aggregates can be a promising backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

Optimum Rates of N. Absorbed Zeolite to be Applied under the Water Percolation Adjusted Sand Paddy Soil (사질답토양(砂質沓土壤)에서 투수속도조절(透水速度調節)과 질소흡착(窒素吸着) Zeolite의 시비량(施肥量)에 관(關)한 연구(硏究))

  • Ahn, Sand-Bae;Park, Jun-Kyu;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 1987
  • A pot experiment was conducted to find out the effectiveness of ammonium sulfate absorbed Zeolite on the yield of rice and the changes of some plant nutrients under the condition of two levels of water percolation. The results were as follows: 1. Unhulled rice yield was increased in the plot of the percolation of 10 mm/day than the percolation of 30 mm/day due to the increase of panicle number and ripening ratio. 2. $NH^+_4-N$, $K^+$ and $SiO_2$ concentration in soil leachates were lower in the percolation rate of 10 mm/day than in the early stage of rice growth were decreased by the application of Zeolite 1.0 T/10a. 3. Plant uptakes of K and N in the harvesting stage were more accelerated in the percolation of 10 mm/day comparing with the percolation of 30 mm/day, and the silica uptake of plant was the reverse against the case of former elements. 4. The optimum rates of Zeolite for maximum yield were about 1T/10a.

  • PDF

Effects of Fine Aggregate Size on Penetration Performances of SSPM (잔골재의 입도분포가 SSPM의 침투성능에 미치는 영향)

  • Yoon, Hyun-Kwang;Youn, Da-Ae;Lee, Chan-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.25-31
    • /
    • 2019
  • This study was conducted to evaluate the penetration performance of the Silane Surface Protection Material (SSPM) penetrating the micro pore of concrete surface. The results was indicated microstructure, porosity and penetration depth of applied SSPM. Silica sand and conventional sand were used as fine aggregate in mortar. And liquid and cream types SSPM were used. The amounts of SPM were applied the 127, 255, 382, 510 g/m2 on the surface of mortar. The penetration depth specimens were made with $100{\times}30mm$ in according with KS F 4930. Penetration depth was evaluated according to KS F 4930, divide specimen and then spraying with water in cross section of specimens, and measure the depth of the non-wetted area. The microstructure result of mortar applied SSPM, it was obtained liquid and cream SSPM in mortar. The porosity results of SSPM application specimens were improved with than that of plain specimens. Test results indicated that the penetration depth of SPM were improved with increasing in amounts of SSPM. As a result of test, application of SSPM to concrete surface, it will improve durability.

Predicting Unsaturated Soil Water Content Using CIELAB Color System-based Soil Color (CIELAB 색 표시계 기반 토색을 활용한 불포화토 함수비 예측 연구)

  • Baek, Sung-Ha;Park, Ka-Hyun;Jeon, Jun-Seo;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.2
    • /
    • pp.31-42
    • /
    • 2023
  • A study was conducted to use soil color obtained from digital im ages as an indicator of soil water content. Digital images of Jumoonjin standard sand with five different water contents were captured under nine different lighting conditions. Through digital image processing, the soil color of the sample was obtained based on the CIELAB color system, and the effect of lighting conditions and water content on the soil color was analyzed. The results indicated that L* showed a high correlation with illuminance, whereas a* and b* showed a high correlation with color temperature. As the water content increased, L*, which represents the brightness of the soil color, decreased, and a* and b* increased. Therefore, the soil color changed from green and blue to red and yellow. Based on the regression analysis results of lighting conditions, water content, and soil color, a water content predicting method based on the soil color of silica-based sand photographed under irregular light conditions was proposed. The proposed method can predict the water content with a m axim um error of 0.29%.

Studies on Engneering Properties of Coal Ash Obtained as Industrial Wastes (산업폐기물(産業廢棄物)로 발생(發生)되는 석탄회(石炭灰)의 토질력학적(土質力學的) 특성(特性)에 관한 연구(硏究))

  • Chun, Byung Sik;Koh, Yong Il;Oh, Min Yeoul;Kwon, Hyung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.115-123
    • /
    • 1990
  • The purpose of this study was to examine the uses of coal ash as a type of construction material. The methods of examination were chemical anlysis, soil laboratory test and the soil vibration test. Materials used were coal ash obtained as a by-product from 5 thermal power plants in Yongdong, Yongwol, Sochon(anthracite coal) and in Samchonpo and Honam (bituminous coal). Over 70% of the coal ash consisted of silica and alumina. The fly ash grain size showed a uniform distribution from fine-sand to silt, and that of the bottom ash showed from sand to gravel. The specific gravity and density of the coal ash were low. The long term strength increased gradually due to the self-setting property resulting from pozzolanic activity. The shear strength was higher than that of general soil. Cohesion and optimum moisture content of anthracite coal ash were higher than bituminous coal ash, whereas the maximum dry density was higher in bituminous coal ash. The coal ash dynamic Young's modulous curve range was similar to that of general soil. Of the results from the soil vibration test by car-running, the size relative acceleration level in the ash pond was higher than that of natural ground, but the damping ratio was lower than that of natural ground near the ash pond. The coal ash has more advantageous engineering properties than general soil with particles of the same size. For example, the California Bearing Ratio of the bottom ash at both Yongdong and Yongwol was 77~137%. Therefore we expect that if further study is done, coal ash can be used as a construction material when reclaiming seashore, construction embankments, road construction, making right-weight aggregate, or as a general construction material.

  • PDF