• Title/Summary/Keyword: Silica sand

Search Result 239, Processing Time 0.027 seconds

The strength properties of alkali-activated silica fume mortars

  • Saridemir, Mustafa;Celikten, Serhat
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.153-159
    • /
    • 2017
  • In this study, the strength properties of alkali-activated silica fume (SF) mortars were investigated. The crushed limestone sand with maximum size of 0-5 mm and the sodium meta silicate ($Na_2SiO_3$) used to activate the binders were kept constant in the mortar mixtures. The mortar specimens using the replacement ratios of 0, 25, 50, 75 and 100% SF by weight of cement together with $Na_2SiO_3$ at a constant rate were produced in addition to the control mortar produced by only cement. Moreover, the mortar specimens using the replacement ratio of 4% titanium dioxide ($TiO_2$) by weight of cement in the same mixture proportions were produced. The prismatic specimens produced from eleven different mixtures were de-moulded after a day, and the wet or dry cure was applied on the produced specimens at laboratory condition until the specimens were used for flexural strength ($f_{fs}$) and compressive strength ($f_c$) measurement at the ages of 7, 28 and 56 days. The $f_{fs}$ and $f_c$ values of mortars applied the wet or dry cure were compared with the results of control mortar. The findings revealed that the $f_c$ results of the alkali activated 50% SF mortars were higher than that of mortar produced with Portland cement only. It was found that the $f_{fs}$ and $f_c$ of alkali-activated SF mortars cured in dry condition was averagely 4% lower than that of alkali-activated SF mortars cured in wet condition.

Catalytic Fast Pyrolysis of Tulip Tree (Liriodendron) for Upgrading Bio-oil in a Bubbling Fluidized Bed Reactor

  • Ly, Hoang Vu;Kim, Jinsoo;Kim, Seung-Soo;Woo, Hee Chul;Choi, Suk Soon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2020
  • The bio-oil produced from the fast pyrolysis of lignocellulosic biomass contains a high amount of oxygenates, causing variation in the properties of bio-oil, such as instability, high acidity, and low heating value, reducing the quality of the bio-oil. Consequently, an upgrading process should be recommended ensuring that these bio-oils are widely used as fuel sources. Catalytic fast pyrolysis has attracted a great deal of attention as a promising method for producing upgraded bio-oil from biomass feedstock. In this study, the fast pyrolysis of tulip tree was performed in a bubbling fluidized-bed reactor under different reaction temperatures, with and without catalysts, to investigate the effects of pyrolysis temperature and catalysts on product yield and bio-oil quality. The system used silica sand, ferric oxides (Fe2O3 and Fe3O4), and H-ZSM-5 as the fluidized-bed material and nitrogen as the fluidizing medium. The liquid yield reached the highest value of 49.96 wt% at 450 ℃, using Fe2O3 catalyst, compared to 48.45 wt% for H-ZSM-5, 47.57 wt% for Fe3O4 and 49.03 wt% with sand. Catalysts rejected oxygen mostly as water and produced a lower amount of CO and CO2, but a higher amount of H2 and hydrocarbon gases. The catalytic fast pyrolysis showed a high ratio of H2/CO than sand as a bed material.

A novel barium oxide-based Iraqi sand glass to attenuate the low gamma-ray energies: Fabrication, mechanical, and radiation protection capacity evaluation

  • Al-Saeedi, F.H.F.;Sayyed, M.I.;Kapustin, F.L.;Al-Ghamdi, Hanan;Kolobkova, E.V.;Tashlykov, O.L.;Almuqrin, Aljawhara H.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3051-3058
    • /
    • 2022
  • In the present work, untreated Iraqi sand with grain sizes varied between 100 and 200 ㎛ was used to produce a colored glass sample that has shielding features against the low gamma-ray energy. Therefore, a weight of 70-60 wt % sand was mixed with 9-14 wt% B2O3, 8-10 wt% Na2O, 4-6 wt% of CaO, 3-6 wt% Al2O3, in addition to 0.3% of Co2O3. After melting and annealing the glass sample, the X-ray diffraction spectrometry was applied to affirm the amorphous phase of the fabricated glass samples. Moreover, the X-ray dispersive energy spectrometry was used to measure the chemical composition, and the MH-300A densimeter was applied to measure the fabricated sample's density. The Makishima-Makinzie model was applied to predict the mechanical properties of the fabricated glass. Besides, the Monte Carlo simulation was used to estimate the fabricated glass sample's radiation shielding capacity in the low-energy region between 22.1 and 160.6 keV. Therefore, the simulated linear attenuation coefficient changed between 10.725 and 0.484 cm-1, raising the gamma-ray energy between 22.1 and 160.6 keV. Also, other shielding parameters such as a half-value layer, pure lead equivalent thickness, and buildup factors were calculated.

Effect of Non-Plastic Fines Content on the Pore Pressure Generation of Sand-Silt Mixture Under Strain-Controlled CDSS Test (변형률 제어 반복직접단순전단시험에서 세립분이 모래-실트 혼합토의 간극수압에 미치는 영향)

  • Tran, Dong-Kiem-Lam;Park, Sung-Sik;Nguyen, Tan-No;Park, Jae-Hyun;Sung, Hee-Young;Son, Jun-Hyeok;Hwang, Keum-Bee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2024
  • Understanding the behavior of soil under cyclic loading conditions is essential for assessing its response to seismic events and potential liquefaction. This study investigates the effect of non-plastic fines content (FC) on excess pore pressure generation in medium-density sand-silt mixtures subjected to strain-controlled cyclic direct simple shear (CDSS) tests. The investigation is conducted by analyzing excess pore pressure (EPP) ratios and the number of cycles to liquefaction (Ncyc-liq) under varying shear strain levels and FC values. The study uses Jumunjin sand and silica silt with FC values ranging from 0% to 40% and shear strain levels of 0.1%, 0.2%, 0.5%, and 1.0%. The findings indicate that the EPP ratio increases rapidly during loading cycles, with higher shear strain levels generating more EPP and requiring fewer cycles to reach liquefaction. At 1.0% and 0.5% shear strain levels, FC has a limited effect on Ncyc-liq. However, at a lower shear strain level of 0.2%, increasing FC from 0 to 10% reduces Ncyc-liq from 42 to 27, and as FC increases further, Ncyc-liq also increases. In summary, this study provides valuable insights into the behavior of soil under cyclic loading conditions. It highlights the significance of shear strain levels and FC values in excess pore pressure generation and liquefaction susceptibility.

SHEAH BOND STRENGTH OF VENEERING CERAMIC TO ELECTROFORMED GOLD WITH THREE DIFFERENT SURFACE TREATMENT (표면처리방법에 따른 전기성형금속의 도재결합강도)

  • Kim Cheol;Lim Jang-Seop;Jeon Young-Chan;Jeong Chang-Mo;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.599-610
    • /
    • 2005
  • Purpose: The success of the bonding between electroformed gold and ceramic is dependent on the surface treatment of the pure gold coping. The purpose of this study was to evaluate the bonding strength between the electroformed gold and ceramic with varying surface treatment. Materials and methods: A total of 32 disks,8 were using conventional ceramometal alloy, 24 were using electroforming technique as recommended by manufacturer, were prepared. 24 electroformed disks were divided 3 groups according to surface treatment, i.e. 50 microns aluminium oxide sandblasting(GES-Sand), gold bonder treatment(GES-Bond) and $Rocatec^{TM}$ system(GES-Rocatec). For control group of conventional alloy 50 microns aluminium oxide treatment was done(V-Supragold). Energy dispersive x-ray analysis and scanning electron microscope image were observed. Using universal testing machine, shear bond strength and bonding failure mode at metal-porcelain interface were measured. Results and Conclusion: The following conclusions were drawn: 1. In the energy dispersive x-ray analysis, the Au was main component in electroformed gold(99.9wt%). After surface treatment, a little amount of $Al_2O_3(2.4wt%)$ were found in GES-Sand, and $SiO_2(4wt%)$ in GES-Bond. In GES-Rocatec, however, a large amount of $SiO_2(17.4wt%)$ were found. 2. In the scanning electron microscopy, similar pattern of surface irregu larities were observed in V-Supragold and GES-Sand. In GES-Bond, surface irregularities were increased and globular ceramic particles were observed. In GES-Rocatec, a large amount of silica particles attached to metal surface with increased surface irregularities were observed. 3. The mean shear bond strength values(MPa) in order were $22.9{\pm}3.7(V-Supragold),\;22.1{\pm}3.8(GES-Bond),\;20.1{\pm}2.8(GES-Rocatec)\;and\;13.0{\pm}1.4(GES-Sand)$. There was no significant difference between V-Supragold, GES-Bond, and GES-Rocatec. (P>0.05) 4. Most bonding failures modes were adhesive type in GES-Sand. However, in V-Supragold, GES-Bond and GES-Rocatec, cohesive and combination failures were commonly observed. From the result, with proper surface treatment method electroformed gold may have enough strength compare to conventional ceramometal alloy.

P1ane Strain Strength of Fine Sands

  • Yoon, Yeo-Won;Van, Impe W.F
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.5-16
    • /
    • 1996
  • Based on many experimental results on fine silica sands, the strength relation between triaxial and plane strain tests is expressed as a function of both density and mean effective principal stress at failure. Stress ratio of mean normal stress to deviatoric stress at failure is a well defined function of shear angle of friction, This ratio decreases with increasing shear angle of friction. Intermediate principal stress is also expressed in terms of major and minor principal stresses and a relatively good agreement between theoretical and observed angles of failure plane in plane strain test is confirmed.

  • PDF

THREE-BODY ABRASIVE WEAR IN A BALL-CRATERING TEST WITH LARGE ABRASIVE PARTICLES

  • Stachowiak, G.B.;Stachowiak, G.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.199-200
    • /
    • 2002
  • Three-body abrasive wear resistance of mild steel, low alloy steel (Bisalloy) and 27%Cr white cast iron was investigated using a ball-cratering test. Glass beads, silica sand, quartz and alumina abrasive particles with sizes larger than $100{\mu}m$ were used to make slurries. It was found that the wear rates of all three materials tested increased with time when angular abrasive particles were used and were rather constant when round particles were used. This increase in wear rates was mainly due to the gradual increase in ball surface roughness with testing time. Abrasive particles with higher angularity caused higher ball surface roughness. Mild steel and Bisalloy were more affected by this ball surface roughness changes than the hard white cast iron. Generally, three-body rolling wear dominated. The contribution of two-body grooving wear increased when the ball roughness was significant. More grooves were found when round particles were used or the size of the particles was decreased.

  • PDF

Strength development of ground perlite-based geopolymer mortars

  • Celikten, Serhat;Isikdag, Burak
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • Raw perlite is a volcanic alumino-silicate and is used as aggregate in the construction industry. The high silica and alumina contained in the raw perlite allows the production of geopolymer mortar with the help of alkaline solutions. In this study, different geopolymer mortars are obtained by mixing ground perlite (GP), sodium hydroxide (NaOH), water and CEN standard sand and the strength and microstructure of these mortars are investigated. Mortar specimens are placed in the oven 24 hours after casting and kept at different temperatures and times, then the specimens are cured under laboratory conditions until the day of strength tests. After curing, unit weight, ultrasound pulse velocity, flexural and compressive strengths are determined. Experimental results indicate that the mechanical properties of the mortars enhance with increasing oven-curing period and temperatures as well as increasing NaOH molarity. In addition, SEM/EDS and XRD analyses are performed on the mortar specimens and the results are interpreted.

Effect of Siliceous Slury Coating on Microstructure of Concrete under Damp Environment (규산질미분말혼합시멘트계도포방수재료가 습윤환경하의 콘크리트의 미세조직에 미치는 영향)

  • 오상근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.1-4
    • /
    • 1992
  • This paper deals with the effect of siliceous slurry coating on concrete microstructure under damp environment. This material is mixed inorganic powder consisted of silica, cement and fine sand and water. Water pressure was given on the coated surface of concrete. for estimation on effect of siliceous slurry coating, microstructure of coated concrete was observed through SEM, and chemical components of crystals were analyzed with X-ray diffraction and EDX. A number of needle and fibrous crystals were produced in microstructure. And based on X-ray diffraction and EDX, needle crystal mainly consist of Al, Si, and Ca, and it is concluded to be ettringite. Fibrous crystals consist of Ca and Si, and it to be calcium silicate hydrate.

  • PDF

Experimental Study on Thermal Conductivity and Viscosity of Grouts for Backfilling Ground Heat Exchanger (수직 밀폐형 자중 열교환기용 뒤채움재의 열전도 및 점도특성 연구)

  • Choi, Hang-Seok;Lee, Chul-Ho;Gil, Hu-Jeong;Choi, Hyo-Pum;Woo, Sang-Baik
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.38-46
    • /
    • 2007
  • In order to characterize the thermal conductivity and viscosity of grout materials used for backfilling ground heat exchangers, nine bentonite grouts and cement grouts being adapted in the United State have been considered in this study. The bentonite grouts indicate that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). In addition, material segregation can be observed when the viscosity of grout is relatively low. The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than the case of the bentonite grouts. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

  • PDF