• Title/Summary/Keyword: Silica nanoparticles

Search Result 268, Processing Time 0.024 seconds

Fabrication and Characterization of Silica Coated Fe3O4 Nanoparticles in Reverse Micro Emulsion (마이크로에멀젼법을 이용하여 실리카 코팅된 나노 Fe3O4 분말의 합성과 분석연구)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Hwang, Kwang-Taek;Yang, Hee-Seung;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.113-116
    • /
    • 2010
  • The silica coated $Fe_3O_4$ nanoparticles have been synthesized using a micro-emulsion method. The $Fe_3O_4$ nanoparticles with the sizes 6 nm in diameter were synthesized by thermal decomposition method. Hydrophobic $Fe_3O_4$ nanoparticles were coated silica using surfactant and tetraethyl orthosilicated (TEOS) as a $SiO_2$ precursor. Shell thickness of silica coated $Fe_3O_4$ can be controlled (11~20 nm) through our synthetic conditions. The $Fe_3O_4$ and silica coated $Fe_3O_4$ nano powders were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and vortex magnetic separation (VMS).

Surface Modification of Colloidal Silica Nanoparticles: Controlling the size and Grafting Process

  • He, Wentao;Wu, Danhua;Li, Juan;Zhang, Kai;Xiang, Yushu;Long, Lijuan;Qin, Shuhao;Yu, Jie;Zhang, Qin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2747-2752
    • /
    • 2013
  • Surface modification of colloidal silica nanoparticles without disrupting the electric double layer of nanoparticles is a major challenge. In the work, silane was employed to modify colloidal silica nanoparticles without inducing bridge flocculation obviously. The effect of pH value of the silica sol, the amount of silane in feed, and reaction temperature on the graft amount and the final size of modified particles was investigated. The increased weight loss by TG and the appearance of $T_2$ and $T_3$ except for $Q_2$ and $Q_3$ signals by CP/MAS $^{29}Si$ NMR of the modified samples verified the successful grafting of silane. The graft amount reached 0.57 mmol/g, which was slightly lower than theory value, and the particle size remained nearly the same as unmodified particles for acidic silica sol at the optimum condition. For alkaline silica sol after modification, aggregates composed of several nanoparticles connected together with silane moleculars as the bridge appeared.

Effect of Reaction Parameters on Silica Nanoparticles Synthesized by Sol-gel Method (졸-겔법에 의한 단분산 실리카 나노입자 합성에 미치는 반응변수의 영향)

  • Lim, Young-Hyun;Kim, Do Kyung;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.442-446
    • /
    • 2016
  • The sol-gel method is the simplest method for synthesizing monodispersed silica particles. The purpose of this study is to synthesize uniform, monodisperse spherical silica nanoparticles using tetraethylorthosilicate (TEOS) as the silica precursor, ethanol, and deionized water in the presence of ammonia as a catalyst. The reaction time and temperature and the concentration of the reactants are controlled to investigate the effect of the reaction parameters on the size of the synthesized particles. The size and morphology of the obtained silica particles are investigated using transmission electron microscopy and particle size analysis. The results show that monodispersed silica particles over a size range of 54-504 nm are successfully synthesized by the sol-gel method without using any additional process. The nanosized silica particles can be synthesized at higher TEOS/$H_2O$ ratios, lower ammonia concentrations, and especially, higher reaction temperatures.

Synthesis of Core-Shell Silica Nanoparticles with Hierarchically Bimodal Pore Structures

  • Yun, Seok-Bon;Park, Dae-Geun;Yun, Wan-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.467-467
    • /
    • 2011
  • Reflecting the growing importance of nanomaterials in science and technology, controlling the porosity combined with well-defined structural properties has been an ever-demanding pursuit in the related fields of frontier researches. A number of reports have focused on the synthesis of various nanoporous materials so far and, recently, the nanomaterials with multimodal porosity are getting an emerging importance due to their improved material properties compared with the mono porous materials. However, most of those materials are obtained in bulk phases while the spherical nanoparticles are one of the most practical platforms in a great number of applications. Here, we report on the synthesis of the core-shell silica nanoparticles with double mesoporous shells (DMSs). The DMS nsnoparticles are spherical and monodispersive and have two different mesoporous shells, i.e., the bimodal porosity. It is the first example of the core-shell silica nanoparticles with the different mesopores coexisting in the individual nanoparticles. Furthermore, the carbon and silica hollow capsules were also fabricated via a serial replication process.

  • PDF

Continuous Nanocomposite Coatings on a Phosphor for the Enhancement of the Long-term Stability

  • Kim, Jong-Woung;Song, Jung-Oh;Kim, Chang-Keun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.233-233
    • /
    • 2006
  • [ $Y_{2}O_{2}S:Eu$ ], a red phosphor, coated with silica nanoparticles or nanocomposites composed of silica nanoparticles and polymeric materials such as PMMA and PVP was prepared via sol-gel process. Samples were prepared from four different methods coded P1, P2, P3, and P4. P1 includes a conventional sol-gel process and a dip-coating method while P2 has the same procedure with P1 except that nanocomposites containing both silica nanoparticles and polymer prepared by sol-gel process were used as coating materials. In P3 method, phosphors were dispersed in a solution containing silica precursor, i.e., TEOS and then polymerization was performed to coat onto the phosphors surface while P4 followed the same procedure with P3 except that a solution containing both TEOS and organic monomer were used in preparing coating materials. Among various coating methods examined in this study, uniform coating of phosphor could be achieved by using method P4, i.e., phosphor surface coating in a solution containing hydrophobic monomer and TEOS. Furthermore, $Y_{2}O_{2}S:Eu$ red phosphor coated with nanocomposite composed of PMMA matrix and silica nanoparticles exhibited enhanced PL intensity and long-term stability.

  • PDF

Antitumor agents bound to silica nanoparticles: potential technology for the remediation of malignant tumors (실리카 나노 입자에 결합된 항종양제: 악성종양 치료를 위한 새로운 치료 방법)

  • Lee, Young-Hwan;Lee, Jung-Ok;Chun, Kyung-Soo
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.579-586
    • /
    • 2010
  • Commercially widely used antitumor agents such as hydroxy urea, 6-mercaptopurine monohydrate, cytosine arabinoside, cyclophosphamide monohydrate and uracil were reacted with 3-(triethoxysilyl)propyl isocyanate and the product hydrolyzed to give silica nanoparticles bound antitumor agents ranging from 10 nm to micron-sized aggregates. The silyl isocyanate derivative was also reacted neat with water to give hybrid organicsilicananoparticles containing $-CH_2-CH_2-CH_2-NH-COOH$ or the corresponding decarboxylated propylamine groups depending on solvent and temperature employed. In vitro tests these functionalized silica nanoparticles were effective in the treatment of malignant tumor cells but had little or no effect on normal cells. Malignant human lung, ovarian, melanoma, CNS(Central nervous system) and colon tumor cells were used in this research. The use of silica as a carrier medium in the present research serves as a model material due to its ready functionalization via silation. The proof of concept established by the results suggests that the technique may be applied to other, more biocompatible carrier nanoparticles.

Synthesis and Characterization of Superparamagnetic Fe3O4@SiO2 Nanoparticles

  • Kulkarni, Sachnin A.;Sawadh, P.S.;Palei, Prakash K.
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.1
    • /
    • pp.100-104
    • /
    • 2014
  • Magnetite nanoparticles were prepared by co-precipitation method and then silica was coated onto the surface of $Fe_3O_4$ by hydrolysis of TEOS. The silica coated magnetite nanoparticles were characterized for its structural, microstructural, optical, vibrational and magnetic properties by X-ray diffraction analysis, Scanning electron microscopy, UV-visible spectroscopy, Infrared spectroscopy and Vibration sample magnetometer, respectively. XRD study confirmed the presence of $SiO_2$ on the surface of magnetite nanoparticles. SEM study indicated that with increase in TEOS content the particles become bigger and mono-disperse. It was also found that the silica coating prevents magnetic particles from aggregation and imparts excellent stability.

Fluorescent Magnetic Silica Nanotubes with High Photostability Prepared by the Conventional Reverse Micro-Emulsion Method

  • Zhang, Yuhai;Son, Sang Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4165-4168
    • /
    • 2012
  • Magnetic fluorescent silica nanotubes were fabricated using reverse micro-emulsions coupled with conventional sol-gel methods. Anodic aluminum oxide templates were used to separate spatially the magnetic and the fluorescent moieties on individual nanotubes and so prevent quenching of the fluorescence. C18 and fluorescent layers were deposited sequentially on silica. Magnetism was then obtained by the introduction of pre-made magnetic nanoparticles inside the nanotubes. The photo- and chemical stabilities of nanotubes were demonstrated through dye release and photobleaching tests. The produced nanotubes did not show fluorescence quenching upon the addition of the nanoparticles, an advantage over conventional spherical fluorescent magnetic nanoparticles. High photostability of nanotubes, magnetism and biocompatiblily make them potentially useful in bioanalysis.

Tannic acid Mediated Surface Modification of Mesoporous Silica Nanoparticles (탄닌산을 이용한 나노입자 표면 개질 및 분석)

  • Lee, Juyeon;Kim, Hyungjun
    • Journal of Adhesion and Interface
    • /
    • v.23 no.3
    • /
    • pp.70-74
    • /
    • 2022
  • Tannic acid, one of plant-derived polyphenols, has been studied as a molecular adhesive, surface modification, energy storage and generating device, and biomedical application as it can interact with biopolymers. In this study, we synthesized porous silica nanoparticles that are widely used in biomedical engineering fields such as drug delivery and bioimaging, and then analyzed tannic acid mediated surface modification of mesoporous silica nanoparticles.