• 제목/요약/키워드: Silica nanoparticles

검색결과 268건 처리시간 0.03초

Effect of Silica Nanoparticles on Tear Strength of CR Compounds: A Comparison Study between the ASTM D470 and DIN VDE 0472-613

  • Changsin Park;Byeong-Rea Son;Gi-Bbeum Lee;Changwoon Nah
    • Elastomers and Composites
    • /
    • 제59권1호
    • /
    • pp.34-41
    • /
    • 2024
  • In this study, the effects of the type and content of silica on the mechanical and tear properties of chloroprene rubber (CR), which is mainly used as a jacket material for mining cables, were studied. The crosslinking density (ΔM) and reinforcing factor (αf) defined using cure characteristics increased with increasing silica content, whereas the cure rate decreased. The hardness, tensile strength, and modulus of the CR compounds increased depending on the silica content and structural development. The reinforcing behavior of the silica-filled CR compounds according to the silica type and content showed the best fit with the Thomas equation of the predictive model. Tear strength was evaluated using two standard test methods, ASTM D470 and DIN VDE 0472-613, and the results were compared. The tear strength increased as the silica content increased, regardless of the test method, and the different tear strengths obtained by the two standard test methods showed a linear relationship with each other, indicating a high correlation.

Lipofectamine-2000 Assisted Magnetofection to Fibroblast Cells Using Polyethyleneimine-Fe3O4@SiO2 Nanoparticles

  • Jang, Eue-Soon;Park, Kyeong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2567-2573
    • /
    • 2012
  • We successfully synthesized $Fe_3O_4@SiO_2$ nanoparticles with ultrathin silica layer of $1.0{\pm}0.5$ nm that polyethyleneimine (PEI) with low molecular weight of 2.0-4.0 kDa was covalently conjugated with the resulting $Fe_3O_4@SiO_2$ nanoparticles by silane coupling reaction. The PEI-$Fe_3O_4@SiO_2$ nanoparticles were further used as gene delivery vector for a human fibroblast cell (IMR-90) line. Gene transfection efficiency of the PEI-$Fe_3O_4@SiO_2$ complexes did not increase remarkably after magnetofection; however, the addition of Lipofectamine 2000 significantly increased the transfection efficiency of the PEI-$Fe_3O_4@SiO_2$ complexes. We believe that the present approach could be utilized for magnetofection as alternative to $Fe_3O_4$ nanoparticles conjugated with the PEI of high molecular weight thanks to its relatively low cytotoxicity and high transfection efficiency.

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • 한국분말재료학회지
    • /
    • 제18권4호
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.

Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects

  • Golabchi, Hadi;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.431-440
    • /
    • 2018
  • Fluid velocity analysis on the instability of pipes reinforced by silica nanoparticles ($SiO_2$) is presented in this paper. Mori-Tanaka model is used for obtaining the effective materials properties of the nanocomposite structure considering agglomeration effects. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on the Reddy higher-order shear deformation theory, the motion equations are derived based on energy method and Hamilton's principal. The frequency and critical fluid velocity of structure are calculated using differential quadrature method (DQM) so that the effects of different parameters such as volume fractions of SiO2 nanoparticles, SiO2 nanoparticles agglomeration, boundary conditions and geometrical parameters of pipes are considered on the nonlinear vibration and instability of the pipe. Results indicate that increasing the volume fractions of SiO2 nanoparticles, the frequency and critical fluid velocity of the structure are increased. Furthermore, considering SiO2 nanoparticles agglomeration, decreases the frequency and critical fluid velocity of the pipe.

Large-scale Synthesis of Uniform-sized Nanoparticles for Multifunctional Medical Applications

  • Hyeon, Taeg-Hwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.1-1
    • /
    • 2011
  • We developed a new generalized synthetic procedure, called as "heat-up process," to produce uniform-sized nanocrystals of many transition metals and oxides without a size selection process. We were able to synthesize uniform magnetite nanocrystals as much as 1 kilogram-scale from the thermolysis of Fe-oleate complex. Clever combination of different nanoscale materials will lead to the development of multifunctional nano-biomedical platforms for simultaneous targeted delivery, fast diagnosis, and efficient therapy. In this presentation, I would like to present some of our group's recent results on the designed fabrication of multifunctional nanostructured materials based on uniform-sized magnetite nanoparticles and their medical applications. Uniform ultrasmall iron oxide nanoparticles of <3 nm were synthesized by thermal decomposition of iron-oleate complex in the presence of oleyl alcohol. These ultrasmall iron oxide nanoparticles exhibited good T1 contrast effect. In in vivo T1 weighted blood pool magnetic resonance imaging (MRI), iron oxide nanoparticles showed longer circulation time than commercial gadolinium complex, enabling high resolution imaging. We used 80 nm-sized ferrimagnetic iron oxide nanocrystals for T2 MRI contrast agent for tracking transplanted pancreatic islet cells and single-cell MR imaging. We reported on the fabrication of monodisperse magnetite nanoparticles immobilized with uniform pore-sized mesoporous silica spheres for simultaneous MRI, fluorescence imaging, and drug delivery. We synthesized hollow magnetite nanocapsules and used them for both the MRI contrast agent and magnetic guided drug delivery vehicle.

  • PDF

Impact of Amino-Acid Coating on the Synthesis and Characteristics of Iron-Oxide Nanoparticles (IONs)

  • Ebrahiminezhad, Alireza;Ghasemi, Younes;Rasoul-Amini, Sara;Barar, Jaleh;Davaran, Soodabeh
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.3957-3962
    • /
    • 2012
  • Iron-oxide nanoparticles (IONs) with biocompatible coatings are the only nanostructural materials which have been approved by the FDA for clinical use. Common biocompatible coatings such as hydrocarbons, polymers, and silica have profound influences on critical characteristics of IONs. Recently, amino acids were introduced as a novel biocompatible coating. In the present study, the effects of amino acids on IONs synthesis and characteristics have been evaluated. Magnetite nanoparticles with L-arginine and L-lysine coatings were synthesised by a coprecipitation reaction in aqueous solvent and their characteristics were compared with naked magnetite nanoparticles. The results showed that amino acids can be a perfect coating for IONs and would increase particle stability without any significant effects on the critical properties of nanoparticles such as particle size and magnetization saturation value.

Electrocatalytic Reduction of Hydrogen Peroxide on Silver Nanoparticles Stabilized by Amine Grafted Mesoporous SBA-15

  • Vinoba, Mari;Jeong, Soon-Kwan;Bhagiyalakshmi, Margandan;Alagar, Muthukaruppan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3668-3674
    • /
    • 2010
  • Mesoporous SBA-15 was synthesized using tetraethylorthosilicate (TEOS) as the silica source and Pluronic (P123) as the structure-directing agent. The defective Si-OH groups present in SBA-15 were successively grafted with 3-chloropropyltrimethoxysilane (CPTMS) followed by tris-(2-aminoethyl) amine (TAEA) and/or tetraethylenepentamine (TEPA) for effective immobilization of silver nanoparticles. Grafting of TAEA and/or TEPA amine and immobilization of silver nanoparticles inside the channels of SBA-15 was verified by XRD, TEM, IR and BET techniques. The silver nanoparticles immobilized on TAEA and /or TEPA grafted SBA-15 was subjected for electrocatalytic reduction of hydrogen peroxide ($H_2O_2$). The TEPA stabilized silver nanoparticles show higher efficiency for reduction of $H_2O_2$ than that of TAEA, due to higher number of secondary amine groups present in TEPA. The amperometric analysis indicated that both the Ag/SBA-15/TAEA and Ag/SBA-15/TEPA modified electrodes required lower over-potential and hence possess high sensitivity towards the detection of $H_2O_2$. The reduction peak currents were linearly related to hydrogen peroxide concentration in the range between $3{\times}10^{-4}\;M$ and $2.5{\times}10^{-3}\;M$ with correlation coefficient of 0.997 and detection limit was $3{\times}10^{-4}\;M$.

Process and characterization of an electrochromic film made of silica-polyaniline composite nanoparticle

  • Hwang, Tae-Jin;Lee, Heung-Yeol;Joo, Hyun-Jung;Yim, Tai-Hong
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.6-7
    • /
    • 2008
  • Composite nanoparticles of silica-polyaniline were synthesized and tested as an electrochromic material. For the optical application, the size of the nanoparticle was intended to be less than 100 nm in diameter. The synthesis was done by using a microemulsion synthesis method where the silica-polyaniline composite nanoparticle was obtained by dispersing two acidic aqueous phases containing aniline and polymerization agent, respectively. Microstructure analysis such as TEM and BET surface area measurement showed the possibility that polyaniline is incorporated in porous silica structure. The composite structure of the particle was proved to enhance chemical stability of the prepared electrochromic film.

  • PDF