• 제목/요약/키워드: Silica exposure

검색결과 118건 처리시간 0.029초

Effects of In Vitro Exposure to Silica on Bioactive Mediator Release by Alveolar Macrophages

  • Lee, Ji-Hee
    • The Korean Journal of Physiology
    • /
    • 제29권1호
    • /
    • pp.1-11
    • /
    • 1995
  • Alveolar macrophages play a pivotal role in the pathogenesis of silicosis since the macrophages may release a wide variety of toxic and inflammatory mediators as well as mitogenic growth factors. In the present study, the effects of in vitro exposure to silica on release of various mediator such as reactive oxygen species, platelet activating factor(PAF), and interleukin-1 (IL-1) by alveolar macrophages were examined. First, hydrogen peroxide release from alveolar macrophages was monitored by measuring the change in fluorescence of scopoletin in the absence or presence of graded concentration of silica. Significantly enhanced release of hydrogen peroxide was observed at 0.5 mg/ml and above. A maximal enhancement of 10 fold above control was observed at 5 mg/ml silica. Similarly, in vitro exposure to silica also significantly stimulated the generation of chemiluminescence from alveolar macrophages at 0.5 mg/ml and above with n maximal enhancement of 8 fold at 5 mg/ml silica. Second, PAF release from alveolar macrophages after 30 min incubation at $37^{\circ}C$ in absence or presence of zymosan and silica was determined by measuring $^{3}H-serotonin$ release ability of the conditioned macrophage supernates from platelets. 5 mg/ml zymosan as a positive control fur the PAF assay increased PAF release by 19 % of total serotonin release. Furthermore, silica also resulted in significant enhancement of the PAF release compared with that in unstimulated (control) cells, i.e., $17.7{\pm}5.8%$ and $24.0{\pm}4.9%$ of total serotonin release at 5 mg/ml and 10 mg/ml silica, respectively, which represents the release of nanomole levels of PAF. Lastly, IL-1 production by alveolar macrophages was analysed following their stimulation with lipopolysaccharide (LPS) and silica by their capacity to stimulate thymocyte proliferation. $10\;{\mu}g/ml$ LPS resulted in an 11 fold increase in IL-1 production. In comparison, $50\;{\mu}g/ml$ silica resulted in a 4 fold increase in IL-1 release. These data indicate that in vitro exposure of alveolar macrophages to silica activates the release of various bioactive mediators such as reactive oxygen species, PAF and IL-1 which thus contribute to amplification of inflammatory reactions and regulation of fibrotic responses by the lung after inhalation of silica.

  • PDF

타일 제조 작업자의 결정형 유리규산 노출평가 사례 (Exposure Assessment of Tile Manufacturing Workers to Crystalline Silica)

  • 차원석;김은영;김대호
    • 한국산업보건학회지
    • /
    • 제33권3호
    • /
    • pp.291-297
    • /
    • 2023
  • Objectives: An epidemiological investigation was requested for a worker who developed COPD and IPF after long-term molding and firing at a domestic tile manufacturing site. We would like to share the results of the exposure assessment and the estimation of past work. Methods: The content of crystalline silica in four raw materials was analyzed, and the respirable fraction of crystalline silica and dust generated in the air from molding and firing workers and other processes were measured. The measurement and analysis method referred to the NIOSH method. Results: The crystalline silica content of the raw material was 24~47%. The concentration of crystalline silica in the molding and firing process workers and the surrounding area was at the level of the exposure standards set by the Ministry of Employment and Labor and ACGIH, and the respirable and total dust exposure levels were generally low. The crystalline silica concentration of the area samples measured to estimate past work was about twice as high as the exposure standard of the Ministry of Employment and Labor (0.05 mg/m3), and the exposure levels of respirable dust were also quite high at 0.903 and 1.332 mg/m3. Conclusions: It was confirmed that tile molding and firing workers are currently exposed to a fairly high level of crystalline silica, and a high level is also confirmed in area samples to estimate past work. In the past, it is judged that the level of exposure would have been much higher due to differences in production volume, working method, presence/absence of local ventilation facilities, and process layout. When working in such a working environment for a long time, respiratory diseases such as lung cancer, COPD, and IPF can occur.

Risk Assessment of Exposure to Silica Dust in Building Demolition Sites

  • Normohammadi, Mohammad;Kakooei, Hossein;Omidi, Leila;Yari, Saeed;Alimi, Rasul
    • Safety and Health at Work
    • /
    • 제7권3호
    • /
    • pp.251-255
    • /
    • 2016
  • Background: Building demolition can lead to emission of dust into the environment. Exposure to silica dust may be considered as an important hazard in these sites. The objectives of this research were to determine the amount of workers' exposure to crystalline silica dust and assess the relative risk of silicosis and the excess lifetime risk of mortality from lung cancer in demolition workers. Methods: Four sites in the Tehran megacity region were selected. Silica dust was collected using the National Institute for Occupational Safety and Health method 7601 and determined spectrophotometrically. The Mannetje et al and Rice et al models were chosen to examine the rate of silicosis-related mortality and the excess lifetime risk of mortality from lung cancer, respectively. Results: The amount of demolition workers' exposure was in the range of $0.085-0.185mg/m^3$. The range of relative risk of silicosis related mortality was increased from 1 in the workers with the lowest exposure level to 22.64/1,000 in the employees with high exposure level. The range of the excess lifetime risk of mortality from lung cancer was in the range of 32-60/1,000 exposed workers. Conclusion: Geometric and arithmetic mean of exposure was higher than threshold limit value for silica dust in all demolition sites. The risk of silicosis mortality for many demolition workers was higher than 1/1,000 (unacceptable level of risk). Estimating the lifetime lung cancer mortality showed a higher risk of mortality from lung cancer in building demolition workers.

국내 업종별 결정형 유리규산 노출 평가 (Evaluation of Crystalline Silica Exposure Level by Industries in Korea)

  • 연동은;최상준
    • 한국산업보건학회지
    • /
    • 제27권4호
    • /
    • pp.398-422
    • /
    • 2017
  • Objectives: The major aim of this study is to construct the database of retrospective exposure assessment for crystalline silica through reviews of literatures in South Korea. Methods: Airborne concentrations of crystalline silica were collected using an academic information search engine, Research Information Service System(RISS), operated by the Korea Education & Research Information Service(KERIS). The key words used for the literature search were 'silica', 'crystalline silica', 'cristobalite', 'quartz' and 'tridymite'. A total number of 18 published documents with the information of crystalline silica level in air or bulk samples were selected and used to estimate retrospective exposures to crystalline silica. Weighted arithmetic mean(WAM) calculated across studies was summarized by industry type. Industries were classified according to Korea Standard Industrial Classification(KSIC) using information provided in the literature. Results: A total of 2,131 individual air sampling data measured from 1987 to 2012 were compiled. Compiled individual measurement data consisted of 827 respirable crystalline silica (RCS), 31 total crystalline silica(TCS), 24 crystalline silica(CS), 778 respirable dust(RD) and 471 total dust(TD). Most of RCS measurements(68.9%) were collected from 'cast of metals(KSIC 243)'. Comparing industry types, 'mining coal and lignite(KISC 051)' showed the highest WAM concentration of RCS, $0.14mg/m^3$, followed by $0.11mg/m^3$ of 'manufacture of other non-metallic mineral products(KSIC 239)', $0.108mg/m^3$ of 'manufacture of ceramic ware(KSIC 232)', $0.098mg/m^3$ of 'heavy construction(KSIC 412)' and $0.062mg/m^3$ of 'cast of metals(KSIC 243)'. In terms of crystalline silica contents in airborne dust, 'manufacture of other non-metallic mineral products(KSIC 239)' showed the highest value of 7.3%(wt/wt), followed by 6.8% of 'manufacture of ceramic ware(KSIC 232)', 5.8% of 'mining of iron ores(KSIC 061)', 4.9% of 'cast of metals(KSIC 243)' and 4.5% of 'heavy construction(KSIC 412)'. WAM concentrations of RCS had no consistent trends over time from 1994 ($0.26mg/m^3$) to 2012 ($0.12mg/m^3$). Conclusion: The data set related RCS exposure level by industries can be used to determine not only the possibility of retrospective exposure to RCS, but also to evaluate the level of quantitative retrospective exposure to RCS.

태백지역 석탄광산의 호흡성 분진 폭로 농도 (The Exposure Level of Respirable Dust of Underground Coal Mines in Taebaek Area)

  • 윤영노;이정주
    • 한국대기환경학회지
    • /
    • 제4권1호
    • /
    • pp.23-32
    • /
    • 1988
  • The exposure level of respirable dust and silica for the coal workers of underground coal mines in Taebaek area was evaluated. Personal air samplers were attached to the coal workers-drillers, coal cutters, their helpers, haulers, and separators. Normality and lognormality of respirable dust and silica concentrations were tested by Kolmogorov-Smirnov one-sample test, differences of means of respirable dust and silica concentration were tested by group-t-test and paired t-test, and relation between respirable dust and silica concentration were tested by regression test.

  • PDF

페인트 제조 작업자의 6가 크롬 및 실리카 노출평가와 호흡보호구 밀착도 검사 사례 (Case study of Hexavalent Chromium and Silica Exposure Assessment and Respiratory Fit-test for Paint Manufacturing Worker)

  • 이현석;김부욱
    • 한국산업보건학회지
    • /
    • 제31권4호
    • /
    • pp.295-303
    • /
    • 2021
  • Objective: Paint manufacturing industry workers are exposed to various lung cancer carcinogenic substances including hexavalent chromium and crystalline silica. Studies have been conducted on lung cancer in Paint manufacturing industry workers and the concentration of hexavalent chromium in paint industry; however, the concentration of crystalline silica and hexavalent chromium and cases of lung cancer in a single Paint factory has never been reported in Korea. Methods: To determine whether the cancer was related to his work environment, we assessed the level of exposure to carcinogens during pouring and mixing talc and pigment. In addition, a mask fit test was performed for the worker. Results: Analysis of talc and silica bulk powder materials showed that crystalline silica (quartz) was 5% in talc and 100% in silica. The green and yellow pigments contained 87% and 92% of lead chromate, respectively. Our quantitative analysis of pigment powder samples showed that the hexavalent chromium contents quantified in the green and yellow pigment samples were 87% and 92%, respectively. In order to estimate his exposure level of hexavalent chromium, we measured a personal exposure level of hexavalent chromium for a worker in accordance with the National Institute for Occupational Safety and Health #7605 method. The results showed that the worker was exposed to the high level of hexavalent chromium (0.033 mg m-3). In addition, the talc powder also contained 5% quartz, and the worker's exposure level to respirable quartz exceeded OEL. As a result of the respiratory protection fit test for workers, the overall Fit Factor was '15' when wearing a second-grade mask and '25' when wearing a first-grade mask, significantly lower than the US Occupational Safety and Health Agency (OSHA) pass value of "100". Conclusion: Workers who pouring and mixing powder materials such as talc or colored pigments in paint manufacturing company may be exposed to high concentrations of carcinogenic substances. These findings indicate that it is necessary to local ventilation system inspection, safety and health education for employers and workers, and periodically monitoring and manage the working environment.

Induction of Functional Changes of Dendritic Cells by Silica Nanoparticles

  • Kang, Kyeong-Ah;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • 제12권3호
    • /
    • pp.104-112
    • /
    • 2012
  • Silica is one of the most abundant compounds found in nature. Immoderate exposure to crystalline silica has been linked to pulmonary disease and crystalline silica has been classified as a Group I carcinogen. Ultrafine (diameter <100 nm) silica particles may have different toxicological properties compared to larger particles. We evaluated the effect of ultrafine silica nanoparticles on mouse bone marrow-derived dendritic cells (BMDC) and murine dendritic cell line, DC2.4. The exposure of dendritic cells (DCs) to ultrafine silica nanoparticles showed a decrease in cell viability and an induction of cell death in size- and concentration-dependent manners. In addition, in order to examine the phenotypic changes of DCs following co-culture with silica nanoparticles, we added each sized-silica nanoparticle along with GM-CSF and IL-4 during and after DC differentiation. Expression of CD11c, a typical DC marker, and multiple surface molecules such as CD54, CD80, CD86, MHC class II, was changed by silica nanoparticles in a size-dependent manner. We also found that silica nanoparticles affect inflammatory response in DCs in vitro and in vivo. Finally, we found that p38 and NF-${\kappa}B$ activation may be critical for the inflammatory response by silica nanoparticles. Our data demonstrate that ultrafine silica nanoparticles have cytotoxic effects on dendritic cells and immune modulation effects in vitro and in vivo.

The association Between Occupational Exposure to silica and Risk of Developing Rheumatoid Arthritis: A Meta-Analysis

  • Mehri, Fereshteh;Jenabi, Ensiyeh;Bashirian, Saeed;Shahna, Farshid Ghorbani;Khazaei, Salman
    • Safety and Health at Work
    • /
    • 제11권2호
    • /
    • pp.136-142
    • /
    • 2020
  • Background: Rheumatoid arthritis (RA) is an autoimmune disease with systemic inflammatory arthritis. This meta-analysis was conducted to examine the association between occupational exposure to silica and the risk of developing RA among different workers. Methods: In this meta-analysis, we searched relevant published studies using major electronic databases including Scopus, PubMed, ISI Web of Science, and Google Scholar search engine up to October 2019, and the references of retrieved articles were also checked for further possible sources. A random-effects model was used to account for heterogeneity among the results of the studies using the pooled odds ratios (ORs) and their 95% confidence intervals (CIs). The Q-statistic and I2 tests were calculated to assess heterogeneity between the studies. Results: The pooled calculation of OR indicated a significant association between occupational exposure to silica and risk of developing RA among different workers (OR = 2.59, 95% CI = 1.73 to 3.45). In addition, the pooled estimates of OR in smokers were statistically significant (OR = 2.49, 95% CI = 1.13 to 3.86). Conclusions: The findings of the present study reveal that occupational exposure to silica may be associated with increased risk of developing RA.

급성 규폐증이 발생한 규조토 분말 취급 작업장의 결정형 실리카 노출평가: 역학조사 사례 (Exposure Assessment of Crystalline Silica in Diatomite Powder Handling Workplace with Acute Silicosis)

  • 김부욱;김대호;김형렬;최병순
    • 한국산업보건학회지
    • /
    • 제29권3호
    • /
    • pp.271-277
    • /
    • 2019
  • Objectives: A 46-year-old woman who had worked on cleaning stainless steel containers with Initially unknown powders died from acute silicosis. To determine whether the acute silicosis was related to his work environment, we conducted exposure assessment the level of exposure to respirable crystalline silica(RCS) during cleaning stainless steel containers with unknown powders. Methods: The exposure assessment of RCS were undertaken according to the National Institute for Occupational Safety and Health(NIOSH) method 7500. The components of the unknown powder were analyzed using X-ray Diffraction. Results: The unknown powder was found to be natural diatomaceous earth, which contained 12% and 9% quartz and cristobalite, respectively, crystalline silica. In the case of cleaning stainless steel containers with diatomaceous earth powder, the primary measurement resulted in 1.3 times higher occupational exposure limit of MOEL(in sum of quartz and cristobalite concentration) and 3.9 times higher in secondary measurement. The workbench was equipped with a local exhaust system, but because there was no hood at the end of the duct, the wind speed at the opening of the duct was 12 m/sec, whereas the controlled wind speed at the working position was only 0.3 m/sec below the legal standard. Conclusions: There is an urgent need to install the hood, conduct safety and health education for employers and workers, and periodically monitoring and manage the working environment.

Effect of Hydrophobic Coating on Silica for Adsorption and Desorption of Chemical Warfare Agent Simulants Under Humid Condition

  • Park, Eun Ji;Cho, Youn Kyoung;Kim, Dae Han;Jeong, Myung-Geun;Kim, Young Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.148.2-148.2
    • /
    • 2013
  • We prepared hydrophobic PDMS-coated porous silica as pre-concentration adsorbent for chemical warfare agents (CWAs). Since CWAs can be harmful to human even with a small amount, detecting low-concentration CWAs has been attracting attention in defense development. Porous silica is one of the promising candidates for CWAs pre-concentration adsorbent since it is thermally stable and its surface area is sufficiently high. A drawback of silica is that adsorption of CWAs can be significantly reduced due to competitive adsorption with water molecule in air since silica is quite hydrophilic. In order to solve this problem, hydrophobic polydimethylsiloxane (PDMS) thin film was deposited on silica. Adsorption and desorption of chemical warfare agent (CWA) simulants (Dimethylmethylphosphonate, DMMP and Dipropylene Glycol Methyl Ether, DPGEM) on bare and PDMS-coated silica were studied using temperature programed desorption (TPD) with and without co-exposing of water vapor. Without exposure of water vapor, desorbed amount of DMMP from PDMS-coated silica was twice larger than that from bare silica. When the samples were exposed to DMMP and water vapor at the same time, no DMMP was desorbed from bare silica due to competitive adsorption with water. On the other hand, desorbed DMMP was detected from PDMS-coated silica with reduced amount compared to that from the sample without water vapor exposure. Adsorption and desorption of DPGME with and without water vapor exposing was also investigated. In case of bare silica, all the adsorbed DPGME was decomposed during the heating process whereas molecular DPGME was observed on PDMS-coated silica. In summary, we showed that hydrophobic PDMS-coating can enhance the adsorption selectivity toward DMMP under humid condition and PDMS-coating also can have positive effect on molecular desorption of DPGME. Therefore we propose PDMS-coated silica could be an adequate adsorbent for CWAs pre-concentration under practical condition.

  • PDF