• Title/Summary/Keyword: Signaling Effect

Search Result 1,521, Processing Time 0.032 seconds

Anticarcinogenic effect of quercetin by inhibition of insulin-like growth factor (IGF)-1 signaling in mouse skin cancer

  • Jung, Minjeong;Bu, So Young;Tak, Ka-Hee;Park, Jeong-Eun;Kim, Eunjung
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.439-445
    • /
    • 2013
  • It has been shown that dysregulation of IGF-1 signaling is associated with tumor incidence and progression, whereas blockade of the signaling can effectively inhibit carcinogenesis. Although several mechanisms of anticancer activity of quercetin were proposed, molecular targets of quercetin have not been identified yet. Hence, we assessed the effect of quercetin on IGF-1 signaling inhibition in BK5.IGF-1 transgenic (Tg) mice, which over-expresses IGF-1 in the skin epidermis. A quercetin diet (0.02% wt/wt) for 20 weeks remarkably delayed the incidence of skin tumor by 2 weeks and reduced tumor multiplicity by 35% in a 7,12-dimethylbenz(a)anthracene (DMBA)-tetradecanoyl phorbol-13-acetate (TPA) two stage mouse skin carcinogenesis protocol. Moreover, skin hyperplasia in Tg mice was significantly inhibited by a quercetin supplementation. Further analysis of the MT1/2 skin papilloma cell line showed that a quercetin treatment dose dependently suppressed IGF-1 induced phosphorylation of the IGF-1 receptor (IGF-1R), insulin receptor substrate (IRS)-1, Akt and S6K; however, had no effect on the phosphorylation of PTEN. Additionally, the quercetin treatment inhibited IGF-1 stimulated cell proliferation in a dose dependent manner. Taken together, these data suggest that quercetin has a potent anticancer activity through the inhibition of IGF-1 signaling.

Anti-inflammatory Effect of Heracleum moellendorffii Roots through the Inhibition of NF-κB and MAPK Signaling, and Activation of ROS/Nrf2/HO-1 Signaling in LPS-stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.66-66
    • /
    • 2019
  • Heracleum moellendorffii roots (HM-R) have been long treated for inflammatory diseases such as arthritis, backache and fever. However, an anti-inflammatory effect and the specific mechanism of HM-R were not yet clear. In this study, we for the first time explored the anti-inflammatory of HM-R. Results: HM-R dose-dependently blocked LPS-induced NO and PGE2 production. In addition, HM-R inhibited LPS-induced overexpression of iNOS, COX-2, $IL-1{\beta}$ and IL-6 in RAW264.7 cells. HM-R inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. Furthermore, HM-R inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. HM-R increased nuclear accumulation of Nrf2 and HO-1 expression. However, NAC reduced the increased nuclear accumulation of Nrf2 and HO-1 expression by HM-R. In HPLC analysis, falcarinol was detected from HM-R as an anti-inflammatory compound. These results indicate that HM-R may exert anti-inflammatory activity by inhibiting $NF-{\kappa}B$ and MAPK signaling, and activating ROS/Nrf2/HO-1 signaling. From these findings, HM-R may have potential to be a candidate for the development of anti-inflammatory drugs.

  • PDF

Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression

  • Wang, Guoli;An, Tianyue;Lei, Cong;Zhu, Xiaofeng;Yang, Li;Zhang, Lianxue;Zhang, Ronghua
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.376-386
    • /
    • 2022
  • Background: Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) plays a critical role in the pathogenesis of depression by modulating synaptic structural remodeling and functional transmission. Previously, we have demonstrated that the ginsenoside Rb1 (Rb1) presents a novel antidepressant-like effect via BDNF-TrkB signaling in the hippocampus of chronic unpredictable mild stress (CUMS)-exposed mice. However, the underlying mechanism through which Rb1 counteracts stress-induced aberrant hippocampal synaptic plasticity via BDNF-TrkB signaling remains elusive. Methods: We focused on hippocampal microRNAs (miRNAs) that could directly bind to BDNF and are regulated by Rb1 to explore the possible synaptic plasticity-dependent mechanism of Rb1, which affords protection against CUMS-induced depression-like effects. Results: Herein, we observed that brain-specific miRNA-134 (miR-134) could directly bind to BDNF 30 UTR and was markedly downregulated by Rb1 in the hippocampus of CUMS-exposed mice. Furthermore, the hippocampus-targeted miR-134 overexpression substantially blocked the antidepressant-like effects of Rb1 during behavioral tests, attenuating the effects on neuronal nuclei-immunoreactive neurons, the density of dendritic spines, synaptic ultrastructure, long-term potentiation, and expression of synapse-associated proteins and BDNF-TrkB signaling proteins in the hippocampus of CUMS-exposed mice. Conclusion: These data provide strong evidence that Rb1 rescued CUMS-induced depression-like effects by modulating hippocampal synaptic plasticity via the miR-134-mediated BDNF signaling pathway.

The WNT/Ca2+ pathway promotes atrial natriuretic peptide secretion by activating protein kinase C/transforming growth factor-β activated kinase 1/activating transcription factor 2 signaling in isolated beating rat atria

  • Li, Zhi-yu;Liu, Ying;Han, Zhuo-na;Li, Xiang;Wang, Yue-ying;Cui, Xun;Zhang, Ying
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.469-478
    • /
    • 2022
  • WNT signaling plays an important role in cardiac development, but abnormal activity is often associated with cardiac hypertrophy, myocardial infarction, remodeling, and heart failure. The effect of WNT signaling on regulation of atrial natriuretic peptide (ANP) secretion is unclear. Therefore, the purpose of this study was to investigate the effect of Wnt agonist 1 (Wnta1) on ANP secretion and mechanical dynamics in beating rat atria. Wnta1 treatment significantly increased atrial ANP secretion and pulse pressure; these effects were blocked by U73122, an antagonist of phospholipase C. U73122 also abolished the effects of Wnta1-mediated upregulation of protein kinase C (PKC) β and γ expression, and the PKC antagonist Go 6983 eliminated Wnta1-induced secretion of ANP. In addition, Wnta1 upregulated levels of phospho-transforming growth factor-β activated kinase 1 (p-TAK1), TAK1 banding 1 (TAB1) and phospho-activating transcription factor 2 (p-ATF2); these effects were blocked by both U73122 and Go 6983. Wnta1-induced ATF2 was abrogated by inhibition of TAK1. Furthermore, Wnta1 upregulated the expression of T cell factor (TCF) 3, TCF4, and lymphoid enhancer factor 1 (LEF1), and these effects were blocked by U73122 and Go 6983. Tak1 inhibition abolished the Wnta1-induced expression of TCF3, TCF4, and LEF1 and Wnta1-mediated ANP secretion and changes in mechanical dynamics. These results suggest that Wnta1 increased the secretion of ANP and mechanical dynamics in beating rat atria by activation of PKC-TAK1-ATF2-TCF3/LEF1 and TCF4/LEF1 signaling mainly via the WNT/Ca2+ pathway. It is also suggested that WNT-ANP signaling is implicated in cardiac physiology and pathophysiology.

Mobility Management Algorithm with Reduced Wireless Signaling Cost in the Wireless Internet (무선 인터넷에서 무선 시그널링 양을 줄이기 위한 이동성 관리 알고리듬)

  • Kim, Tae-Hyoun;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2B
    • /
    • pp.27-35
    • /
    • 2005
  • As the number of Mobile IP users is expected to grow, the signaling overhead associated with mobility management in the wireless Internet is bound to grow. And since the wireless link has far less bandwidth resources and limited scalability compared to the wired network link, the signaling overhead associated with mobility management has a severe effect on the wireless link. In this paper, we propose IP-Grouping algorithm that can greatly reduce the signaling cost in the wireless link as Access Routers(ARs) with a large rate of handoff are grouped into a Group Zone. Based on the numerical analysis and simulation, we show that the wireless signaling cost in the IP-Grouping is much lower than that of the Hierarchical Mobile IPv6 under various condition.

Effect of Garlic Extract on the Activation Pattern of MAPK Signaling in the Rat Heart After a Bout Exercise (마늘추출물이 운동부하 흰쥐의 심장내 MAPK signaling 활성에 미치는 영향)

  • Lee, Jun-Hyuk;Chung, Kyung-Tae;Lee, Yang-Tae;Choi, Yung-Hyun;Choi, Byung-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1299-1303
    • /
    • 2008
  • Since exercise training induces mechanical stress to the heart, we examined the activation pattern of mitogen-activated protein kinase(MAPK)s signaling pathway by immunohistochemistry. The immunoreactions of MAPKs signaling with c-fos and Schiff's reaction were increased in the cardiac muscle of exercised rat compared to normal one except immunoreaction for MEK1/2 and ERK1/2 and p38. However, the immunoreaction of phospho-JNK and phospho-p38 with early gene c-fos were arrested markedly in water extract of Alliium sativum (WEAS) treated rat compared to exercised one. Since MAPKs signaling does play a protective role in response to pathological stimulus in the heart, results in the present study suggest that WEAS may act as a alleviating agent for exercise-induced stress to. heart through regulating MAPKs signaling activation.

A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts

  • Lee, Hyunji;Hong, Youngeun;Tran, Quangdon;Cho, Hyeonjeong;Kim, Minhee;Kim, Chaeyeong;Kwon, So Hee;Park, SungJin;Park, Jongsun;Park, Jisoo
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.431-441
    • /
    • 2019
  • Background: The efficacy of ginseng, the representative product of Korea, and its chemical effects have been well investigated. The ginsenoside RG3 has been reported to exhibit apoptotic, anticancer, and antidepressant-like effects. Methods: In this report, the putative effect of RG3 on several cellular function including cell survival, differentiation, development and aging process were evaluated by monitoring each specific marker. Also, mitochondrial morphology and function were investigated in ultraviolet (UV)-irradiated normal human dermal fibroblast cells. Results: RG3 treatment increased the expression of extracellular matrix proteins, growth-associated immediate-early genes, and cell proliferation genes in UV-irradiated normal human dermal fibroblast cells. And, RG3 also resulted in enhanced expression of antioxidant proteins such as nuclear factor erythroid 2-related factor-2 and heme oxygenase-1. In addition, RG3 affects the morphology of UV-induced mitochondria and plays a role in protecting mitochondrial dysfunction. Conclusioin: RG3 restores mitochondrial adenosine triphosphate (ATP) and membrane potential via its antioxidant effects in skin cells damaged by UV irradiation, leading to an increase in proteins linked with the extracellular matrix, cell proliferation, and antioxidant activity.

Delay Analysis for Dynamic Multiplexing Scheme in Connection-oriented Wireless Cellular Networks

  • Park, Cheon-Won
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.74-77
    • /
    • 1998
  • We consider connection-oriented wireless cellular networks. These networks employ dedicated radio channels for the transmission of signaling information. A forward signaling channel is a common signaling channel assigned to carry the multiplexed stream of paging and channel allocation(virtual circuit allocation) packets from a base station to mobile stations. The delay levels experienced by paging and channel allocation packets have serious effect on the utilization level of the limited radio channel capacity. While a slotted mode operation is used to reduce the power consumption level at mobile stations, it may induce an increase in packet delay levels. In this paper, we thus consider a multiplexing scheme for paging and channel allocation packets under which slots are dynamically allocated for the paging packet transmission. For this dynamic scheme, we develop an analytical method for deriving the delay characteristics exhibited by paging and channel allocation packets, and investigate the effect of network parameters on the delay level by using this method.

  • PDF

IGF-I Exerts an Anti-inflammatory Effect on Skeletal Muscle Cells through Down-regulation of TLR4 Signaling

  • Lee, Won-Jun
    • IMMUNE NETWORK
    • /
    • v.11 no.4
    • /
    • pp.223-226
    • /
    • 2011
  • Although exercise-induced growth factors such as Insulin-like growth factor-I (IGF-I) are known to affect various aspects of physiology in skeletal muscle cells, the molecular mechanism by which IGF-I modulates anti-inflammatory effects in these cells is presently unknown. Here, we showed that IGF-I stimulation suppresses the expression of toll-like receptor 4 (TLR4), a key innate immune receptor. A pharmacological inhibitor study further showed that PI3K/Akt signaling pathway is required for IGF-I-mediated negative regulation of TLR4 expression. Furthermore, IGF-I treatment reduced the expression of various NF-${\kappa}B$-target genes such as TNF-${\alpha}$ and IL-6. Taken together, these findings indicate that the anti-inflammatory effect of exercise may be due, at least in part, to IGF-I-induced suppression of TLR4 and subsequent downregulation of the TLR4-dependent inflammatory signaling pathway.

Eriodictyol Inhibits the Production and Gene Expression of MUC5AC Mucin via the IκBα-NF-κB p65 Signaling Pathway in Airway Epithelial Cells

  • Yun, Chawon;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.637-642
    • /
    • 2021
  • In this study, we investigated whether eriodictyol exerts an effect on the production and gene expression of MUC5AC mucin in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with eriodictyol for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The effect of eriodictyol on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated. Eriodictyol suppressed the MUC5AC mucin production and gene expression induced by PMA via suppression of inhibitory kappa Bα degradation and NF-κB p65 nuclear translocation. These results suggest that eriodictyol inhibits mucin gene expression and production in human airway epithelial cells via regulation of the NF-κB signaling pathway.