• Title/Summary/Keyword: Signal to Interference and Noise Ratio

Search Result 446, Processing Time 0.024 seconds

Performance Analysis of BPSK Multitone DS/CDMA System with Interference Canceller (간섭 제거기를 사용한 BPSK 다중 톤 DS/CDMA 시스템의 성능 분석)

  • 박승근;강병권
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.519-529
    • /
    • 1998
  • In this paper, we analyze the effects of interference canceller on the performance of multitone DS/CDMA system. Although there are various kinds of interference cancellers suggested by different researchers, we adopt a canceller used by Yoon et at.[9]. We consider three kinds of inteferences, that is, multiPath interference(MPI), interchannel interference(ICI) and multiple access interference(MPI). The equations for variances ate derived for the inteferences and thermal noise used for signal to noise ratio calculation. We also consider RAKE reception over multipath channel and three stage interference canceller used for performance improvement. We draw some conclusions that interference canceller is effective in multitone DS/CDMA system and the performance is further improved with the higer order of diversity and larger number of PN chips.

  • PDF

Robust Transmission Waveform Design for Distributed Multiple-Radar Systems Based on Low Probability of Intercept

  • Shi, Chenguang;Wang, Fei;Sellathurai, Mathini;Zhou, Jianjiang;Zhang, Huan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.70-80
    • /
    • 2016
  • This paper addresses the problem of robust waveform design for distributed multiple-radar systems (DMRSs) based on low probability of intercept (LPI), where signal-to-interference-plus-noise ratio (SINR) and mutual information (MI) are utilized as the metrics for target detection and information extraction, respectively. Recognizing that a precise characterization of a target spectrum is impossible to capture in practice, we consider that a target spectrum lies in an uncertainty class bounded by known upper and lower bounds. Based on this model, robust waveform design approaches for the DMRS are developed based on LPI-SINR and LPI-MI criteria, where the total transmitting energy is minimized for a given system performance. Numerical results show the effectiveness of the proposed approaches.

Reducing the Effects of Noise Light in a Visible Light Communication System Using Two Color LEDs (가시광통신 시스템에서 2색 LED를 이용한 잡음광의 영향 감소)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.429-433
    • /
    • 2012
  • In this paper, we reduced the optical noise interference in a visible light communication system using two color LEDs. In the transmitter, the original and the inverted signals of the transmitted data modulated a red LED and a blue LED, respectively. In the receiver, a differential detector which is composed of two photodetectors and an optical red filter detected the mixed signal radiated from the two LEDs. In an environment that the optical noise from a fluorescent lamp exists, the signal-to-noise ratio in this system was improved by about 20dB compared to that in the conventional system which uses a single LED and a single photodetector.

Intersymbol Interferences Due to Mismatched Roll-off Factors and Sampling-Time Jitter in a Gaussian Noise Channel

  • Park, Seung Keun;Mok, Jin Dam;Na, Sang Sin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2E
    • /
    • pp.47-54
    • /
    • 1997
  • This paper presents two results on intersymbol interferences in baseband digital communication over an additive white Gaussian noise channel-the interferences due to mismatched square-root raised-cosine filters, in which the filters have different roll-off factors, and / or due to sampling-time jitter. The result for the mismatched filters is that even the jitter-free sampling causes intersymbol interference and it is negligibly small for a wide range of signal-to-noise ratio up to 10dB, for the roll-off factor ranging from 0.2 to 0.5, the mismatch loss being within 0.1dB from the optimum at around 10-6 .For jitter interference an approximation formula for the bit error probability is derived in case of the matched filters, which shows how the roll-off factors and the amount of jitter affect the system performance. The formula is reasonably accurate.

  • PDF

On the Optimal Cyclic Delay Value in Cyclic Delay Diversity (순환 지연 다이버시티 기법에서의 최적의 순환 지연 값)

  • Kim, Yong-June;Rim, Min-Joong;Jeong, Byung-Jang;Noh, Tae-Gyun;Kim, Ho-Yun;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.643-651
    • /
    • 2008
  • In this paper, we propose a method to determine the optimal cyclic delay value of cyclic delay diversity(CDD) in orthogonal frequency division multiplexing(OFDM) systems. As the cyclic delay value increases, we can get signal to interference and noise ratio(SINR) gain by diversity effect, while SINR loss increases because of channel estimation errors. If the optimal delay value obtained by the proposed method is applied to CDD scheme, we can minimize the required SINR for a given FER(frame error rate) under the above mentioned trade-off.

On Additive Signal Dependent Gaussian Noise Channel Capacity for NOMA in 5G Mobile Communication

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • The fifth generation (5G) mobile communication has been commercialized and the 5G applications, such as the artificial intelligence (AI) and the internet of things (IoT), are deployed all over the world. The 5G new radio (NR) wireless networks are characterized by 100 times more traffic, 1000 times higher system capacity, and 1 ms latency. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In order for the NOMA performance to be improved, sometimes the additive signal-dependent Gaussian noise (ASDGN) channel model is required. However, the channel capacity calculation of such channels is so difficult, that only lower and upper bounds on the capacity of ASDGN channels have been presented. Such difficulties are due to the specific constraints on the dependency. Herein, we provide the capacity of ASDGN channels, by removing the constraints except the dependency. Then we obtain the ASDGN channel capacity, not lower and upper bounds, so that the clear impact of ASDGN can be clarified, compared to additive white Gaussian noise (AWGN). It is shown that the ASDGN channel capacity is greater than the AWGN channel capacity, for the high signal-to-noise ratio (SNR). We also apply the analytical results to the NOMA scheme to verify the superiority of ASDGN channels.

An Adaptive Adjacent Cell Interference Mitigation Method for Eigen-Beamforming Transmission in Downlink Cellular Systems (하향 링크 셀룰러 시스템의 Eigen-Beamforming 전송을 위한 적응적 인접 셀 간섭 완화 방법)

  • Chang, Jae-Won;Kim, Se-Jin;Kim, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.248-256
    • /
    • 2009
  • EB(Eigen-Beamforming) has widely been applied to MIMO(Multiple-Input Multiple-Output) systems to form beams which maximize the effective signal-to-interference plus noise ratio(SINR) of the receiver using the singular value decomposition(SVD) of the MIMO channel. However, the signal detection performance for the mobile station near the cell boundary is severely degraded and the transmission efficiency decreases due to the influence of the interference signal from the adjacent cells. In this paper, we propose an adaptive interference mitigation method for the EB transmission, and evaluate the reception performance. In particular, a reception strategy which adaptively utilizes optimal combining(OC) and minimum mean-squared error for Intercell spatial demultiplexing(MMSE-lSD) is proposed, and the reception performance is investigated in terms of the effective SINR and system capacity. For the average system capacity, the proposed adaptive reception demonstrates the performance enhancement compared to the conventional EB reception using the receiver beamforming vector, and up to 2 bps/Hz performance gain is achieved for mobile station located at the cell edge.

A Novel Frequency Planning and Power Control Scheme for Device-to-Device Communication in OFDMA-TDD Based Cellular Networks Using Soft Frequency Reuse (OFDMA-TDD 기반 셀룰러 시스템에서 디바이스간 직접통신을 위한 SFR 자원할당 및 전송 전력조절 방법)

  • Kim, Tae-Sub;Lee, Sang-Joon;Lim, Chi-Hun;Ryu, Seungwan;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.885-894
    • /
    • 2012
  • Currently, Demand of data traffic has rapidly increased by popular of smart device. It is very difficult to accommodate demand of data traffic by limited resource of base station (BS). To solve this problem, method has proposed that the Device-to-Device (D2D) reduce frequency overload of the BS and all of the user equipment (UE) inside the BS and neighbor BS don't allow communicating directly to BS. However, in LTE-Advance system cellular link and sharing radio resources of D2D link, the strong interference of the cellular network is still high. So we need to eliminate or mitigate the interference. In this paper, we use the transmission power control method and Soft Frequency Reuse (SFR) resource allocation method to mitigate the interference of the cellular link and D2D link. Simulation results show that the proposed scheme has high performance in terms of Signal to Noise Ratio (SINR) and system average throughput.

A Study on the Bandwidth Efficiency of MC-CDMA System (MC-CDMA 시스템에서 주파수 대역 효율에 관한 연구)

  • Jee, Innho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.43-48
    • /
    • 2021
  • We propose 2-channel filter bank method instead of FFT method to decrease sub-channel interference for using of efficient frequency resource in MC-CDMA method. Since a prototype filter of filter bank having wavelet characteristic is designed having more less side-lobe, the nearest co-channel interference and inter symbol interference are decreased efficiently. Since the spreading signal of suggesting MC-CDMA system is being demanded for less chip rate and is not being considering for autocorrelation characteristic, the Walsh code can be used as a optimal orthogonal signal set. We consider bit error rate and signal to noise ratio to estimate the performance of suggested system on condition that white noise channel and arbitrary sinusoidal jammer are existing. As a result of comparing to traditional FFT-based MC-CDMA simulation result, our suggested system has shown better performance than traditional MC-CDMA method on the side of minimizing interference effect.

Sub-channel Allocation Based on Multi-level Priority in OFDMA Systems

  • Lee, JongChan;Lee, MoonHo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1876-1889
    • /
    • 2013
  • Packet-based mobile multimedia services for the Internet differ with respect to their resource requirements, performance objectives, and resource usage efficiencies. Nonetheless, each mobile terminal should support a variety of multimedia services, sometimes even simultaneously. This paper proposes a sub-channel allocation scheme based on multi-level priority for supporting mobile multimedia services in an Orthogonal Frequency Division Multiple Access (OFDMA) system. We attempt to optimize the system for satisfying the Quality of Service (QoS) requirements of users and maximize the capacity of the system at the same time. In order to achieve this goal, the proposed scheme considers the Signal-to-Interference-plus-Noise Ratio (SINR) of co-sub-channels in adjacent cells, the Signal-to-Noise Ratio (SNR) grade of each sub-channel in the local cell on a per-user basis, and the characteristics of the individual services before allocating sub-channels. We used a simulation to evaluate our scheme with the performance measure of the outage probabilities, delays, and throughput.