• Title/Summary/Keyword: Signal profile

Search Result 406, Processing Time 0.024 seconds

Optical Phase Conjugation Combined with Dispersion Maps Configured with Sine-wave Profile (사인파형 프로파일 구조의 분산 맵과 결합한 광 위상 공액)

  • Seong-Real Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.474-480
    • /
    • 2022
  • Optical phase conjugation is one of techniques capable of compensating for distortion due to chromatic dispersion and nonlinearity, which are essential for long-distance transmission of wavelength division multiplexed (WDM) signal. We proposed and analyzed a way to solve the limitations of this technology through dispersion map with periodic dispersion profile. In the proposed system, optical phase conjugator (OPC) is placed at the position of 1:2 or 2:1 of the entire link, and the dispersion profile of dispersion map has periodic shape in the form of a sine wave or an inverse-sine wave. It was confirmed that the effective compensation of the distorted 960 Gb/s WDM signal was further improved through the proposed periodic dispersion map when the OPC was located at the 1:2 point instead of the 2:1 point of the entire link. In addition, it was found that the maximum RDPS allocated to fiber span should be 1,800 ps/nm or more in order to increase the design flexibility of dispersion-managed link with the proposed periodic dispersion map.

Analysis of Hertzian Contact using East Fourier Transform (FFT를 이용한 Hertzian Contact 해석)

  • 구영필;조용주
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.121-127
    • /
    • 1998
  • In this study, a numerical procedure to solve a contact problem has been developed. The procedure takes advantage of signal processing technique in frequency domain to achieve shorter computing time. Boussinesq's equation was adopted as the response function. This procedure is applicable to a non-periodic surface profile as well as a periodic one. The validity of this procedure has been established by comparing the numerical results with the exact solutions. The fastness of this procedure was shown in comparison with other algorithm.

Dynamics and Transport of Molecules Studied by Transient Grating Method : Methyl Red in Solution

  • 김선희;김성규
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.365-373
    • /
    • 1996
  • Time profile of the transient grating signal induced by a nanosecond pulsed laser excitation of methyl red is investigated in alcohols and toluene at several solvent temperatures. The signal decays biexponentially with well-separated time constants; the faster decay is identified as due to thermal diffusion of the solvents and the slower one as mainly due to translational diffusion of the solute. The measured translational diffusion constants of methyl red in toluene are close to a hydrodynamic prediction with a slip boundary condition while those in alcohols are larger by 30% and increase slightly with the size of alcohols. We compare the results with modified hydrodynamic models.

Evaluation of the change in Geotechnical properties due to the Construction of Civil engineering Structure using HWAW Method (HWAW방법을 이용한 토목구조물 건설에 따른 하부 지반 물성 변화 평가)

  • Park, Hyung-Choon;Noh, Hee-Kwan;Park, Byeong-Cheol;Kim, Min-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.182-187
    • /
    • 2010
  • In the various fields of Civil Engineering, shear modulus is very important input parameters to design many constructions and to analyze ground behaviors. In general, a shear wave velocity profile is decided by various experiments before constructing a structure and, analysis and design are carried out by using decided shear wave velocity profile of the site. However, if civil structures are started to construct, the shear wave velocity will be increased more than before constructions because of confining pressure increase by the load of structure. The evaluation of the change in shear wave velocity profile is used very importantly when maintaining, managing, reinforcing and regenerating existing structures. In this study, a non-destructively geotechnical investigation method by using the HWAW method is applied to an evaluation of change in properties of the site according to construction. Generally, the space for experiments is narrow when underground of existing or on-going structures is evaluate, so a prompt non-destructive experiment is required. This prompt non-destructive experiment would be performed by various in-situ seismic methods. However, most of in-situ seismic methods need more space for experiments, so it is difficult to be applied. The HWAW method using the Harmonic wavelet transforms, which is based on time-frequency analysis, determines shear wave velocity profile. It consists of a source as well as short receiver spacing that is 1~3m, and is able to determine a shear wave velocity profile from surface to deep depth by one test on a space. As the HWAW method uses only the signal portion of the maximum local signal/noise ratio to determine a profile, it provides reliability shear modulus profile such as under construction or noisy situation by minimizing effects of noise from diverse vibration on a construction site or urban area. To estimate the applicability of the proposed method, field tests were performed in the change of geotechnical properties according to constructing a minimized modeling bent. Through this study, the change of geotechnical properties of the site was effectively evaluated according to construction of a structure.

  • PDF

Implementation of Noise Reduction Methodology to Modal Distribution Method

  • Choi, Myoung-Keun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.1-6
    • /
    • 2011
  • Vibration-based Structural Health Monitoring (SHM) systems use field measurements of operational signals, which are distorted by noise from many sources. Reducing this noise allows a more accurate assessment of the original "clean" signal and improves analysis results. The implementation of a noise reduction methodology for the Modal Distribution Method (MDM) is reported here. The spectral subtraction method is a popular broadband noise reduction technique used in speech signal processing. Its basic principle is to subtract the magnitude of the noise from the total noisy signal in the frequency domain. The underlying assumption of the method is that noise is additive and uncorrelated with the signal. In speech signal processing, noise can be measured when there is no signal. In the MDM, however, the magnitude of the noise profile can be estimated only from the magnitude of the Power Spectral Density (PSD) at higher frequencies than the frequency range of the true signal associated with structural vibrations under the additional assumption of white noise. The implementation of the spectral subtraction method to MDM may decrease the energy of the individual mode. In this work, a modification of the spectral subtraction method is introduced that enables the conservation of the energies of individual modes. The main difference is that any (negative) bars with a height below zero after subtraction are set to the absolute value of their height. Both noise reduction methods are implemented in the MDM, and an application example is presented that demonstrates its effectiveness when used with a signal corrupted by noise.

The Ultrasonic Image Processing by Peak Value, Time Average and Depth Profile Technique in High Frequency Bandwidth (고주파대역에서 피크값, Time Average 및 Depth Profile 초음파 영상처리)

  • 이종호
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.120-127
    • /
    • 1998
  • In this paper, ultrasonic images of 25MHz bandwidth were acquired by applying peak value variation, time average and depth profile algorithm to acoustic microscopy and its performance was compared and analysed with each other. In the time average algorithm, total reflecting pulse wave from a spot on the coin was converted to digital data in time domain and average value of the converted 512 data was calculated in computer. Time average image was displayed by gray levels colour of acquired N x N matrix average data in the scanning area on the sample. This technique having smoothing effects in time domain make developed an ultrasonic image on a highly scattering area. In depth profile technique, time difference between the reference and the reflected signal was detected with minimum resolution performance of 2ns, thus we can acquired real 3 dimensional shape of the scanning area in accordance with relative magnitude. Through these experiments, peak value, time average and depth profile images were analysed and advantages of each algorithm were proposed.

  • PDF

A Study on Welding Process Algorithm through Real-time Current Waveform Analysis (실시간 공정신호를 통한 용접공정 알고리즘에 관한 연구)

  • Yoon, Jin Young;Lee, Young Min;Shin, Soon Cheol;Choi, Hae Woon
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • The current waveform was analysed to monitor the weld quality in real time process. The acquired current waveform was discretely analysed for the top and bottom limits of peaks as well as the pulse frequency measurement. Fast Fourier Transform was implemented in the program to monitor the pulse frequency in real time. The developed algorithm or program was tested for the validation purpose. The cross-section of weld profile was compared to the current waveform profile to correlate the monitored signal and the actual parts. Pulse frequency was also used as auxiliary tool for the quality monitoring. Based on the results, it was possible to evaluate the quality of welding by measure the current waveform profile and frequency measurement.

Detection of hull side wave profile using the Mexican hat function (Mexican Hat 함수를 이용한 선측 파고 계측)

  • Kwon, S.H.;Lee, H.S.;Jung, D.J.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.270-274
    • /
    • 2002
  • This paper presents the results of wave profile detection from video image using Mexican hat function. The Mexican hat function has been extensively used in the filed of signal processing to detect discontinuity in the images. The analysis was done on the numerical image and video images of waves which were taken in the circulating water channel. The results show that Mexican hat function is an excellent tool in the wave profile detection.

  • PDF

Study on Coherent Anti-Stokes Raman Spectroscopy for Measuring Temperature Profile in a Flame (CARS를 이용한 화염내부 온도분포 측정연구)

  • 한재원;박승암;이은성;이충희;강경태;정석호
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.266-272
    • /
    • 1992
  • A coherent anti-Stokes Raman spectroscopy (CARS) technique is applied to measure temperature profile in a flame. The CARS signal is obtained with BOXCARS phase matching to get better spatial resolution. A program routine for calculating temperature of the flame from the measured CARS spectra is studied. The routine includes the line broadening mechnism of the molecules described with a modified energy gap (MEG) law by using the perturbation theory. We have found that the temperature profile obtained with the MEG law is properly fit with the results measured with a thermocoulpe and calculated with the adiabatic theory.

  • PDF

Changes in the Optogalvanic Signal Amplitude in a Hollow Cathode Discharge

  • Lee, Jun-Hoi;Koo, Kyung-Wan;Lee, Ki-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.212-216
    • /
    • 2009
  • The spatial distribution of the optogalvanic (OG) signal in argon at the 801.489 nm ($1s_5-2p_8$ transition at the metastable level in Paschen notation) was investigated in the radial direction of a hollow cathode discharge tube. The results of this experiment showed that the OG signal amplitude decreases in accordance with the following two conditions; first, the level of discharge current and second, the distance from the cathode dark space. These results can be quantified by analyzing the electron density profile along the discharge regions, which can directly influence the collisional ionization induced by electron impact.