Browse > Article
http://dx.doi.org/10.4313/TEEM.2009.10.6.212

Changes in the Optogalvanic Signal Amplitude in a Hollow Cathode Discharge  

Lee, Jun-Hoi (Engineering Education Center of Accreditation, Chungnam National University)
Koo, Kyung-Wan (Department of Defense Science and Technology, Hoseo University)
Lee, Ki-Sik (School of Electronic and Electrical Engineering, Dankook University)
Publication Information
Transactions on Electrical and Electronic Materials / v.10, no.6, 2009 , pp. 212-216 More about this Journal
Abstract
The spatial distribution of the optogalvanic (OG) signal in argon at the 801.489 nm ($1s_5-2p_8$ transition at the metastable level in Paschen notation) was investigated in the radial direction of a hollow cathode discharge tube. The results of this experiment showed that the OG signal amplitude decreases in accordance with the following two conditions; first, the level of discharge current and second, the distance from the cathode dark space. These results can be quantified by analyzing the electron density profile along the discharge regions, which can directly influence the collisional ionization induced by electron impact.
Keywords
Cathode dark space; Hollow cathode; Negative glow; Optogalvanic signal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Yamaguchi and M. Suzuki, Appl. Phys. Lett. 41, 597 (1982)   DOI
2 M. Hippler and J. Pfab, Optic. Commun. 97, 347 (1993)   DOI
3 A. Sasso, M. I. Schisano, G. M. Tino, and M. Inguscio, J. Chem. Phys. 93, 7774 (1990)   DOI
4 P. Pianarosa, Y. Demers, and J. M. Gagne, J. Opt. Soc. Am. B Opt. Phys. 1, 704 (1984)   DOI
5 A. Ben-Amar, G. Erez, S. Fastig, and R. Shuker, Appl. Opt. 23, 4529 (1984)   DOI
6 R. Shuker, A. Ben-Amar, and G. Erez, J. Appl. Phys. 54, 5685 (1983)   DOI   ScienceOn
7 E. C. Jung, S. P. Rho, J. Lee, J.-H. Lee, and H. Cho, Optic. Commun. 149, 283 (1998)   DOI   ScienceOn
8 J. H. Lee, Hyuck Cho, E. C. Jung, and J. M. Lee, J. Korean Phys. Soc. 38, 99 (2001)
9 J. H. Lee, J. Phys. Soc. Jpn. 72, 1107 (2003)   DOI   ScienceOn
10 B. N. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching (Wiley, New York, 1980)
11 V. S. Bordin and Y. M. Kagan, Optic. Spectros. 23, 108 (1967)
12 S. Caroli, Progr. Anal. Atom. Spectros. 6, 253 (1983)
13 J. P. Martinez and J. C. Amare, J. Phys. D Appl. Phys. 31, 312 (1998)   DOI   ScienceOn
14 K. C. Smyth and P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978)   DOI   ScienceOn
15 E. Miron, I. Smilanski, J. Liran, S. Lavi, and G. Erez, IEEE J. Quantum. Electron. QE-15, 194 (1979)   DOI
16 A. Ben-Amar, G. Erez, and R. Shuker, J. Appl. Phys. 54, 3688 (1983)   DOI   ScienceOn
17 E. C. Jung, J. Lee, J. H. Lee, and H. Cho, J. Korean Phys. Soc. 34, 209 (1999)
18 D.E. Murnick, R. B. Robinson, D. Stoneback, M. J. Colgan, and F. A. Moscatelli, Appl. Phys. Lett. 54, 792 (1989)   DOI
19 V. D'Accurso, F. A. Manzano, and V. B. Slezak, Appl. Phys. B. Laser. Optic. 63, 375 (1997)   DOI
20 B. Barbieri, N. Beverini, and A. Sasso, Rev. Mod. Phys. 62, 603 (1990)   DOI
21 W. L. Wiese, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities. Vol. 2: Sodium through Calcium. A Critical Data Compilation (National Standard Reference Data Series) (US Department of Commerce, National Bureau of Standards, Washington, DC, 1969), p. 187
22 R. R. Arslanbekov, A. A. Kudryavtsev, and R. C. Tobin, Plasma Sources Sci. Technol. 7, 310 (1998)   DOI   ScienceOn