• 제목/요약/키워드: Signal processing system

검색결과 2,883건 처리시간 0.034초

GPS 항재밍을 위한 적응 배열 안테나의 성능 분석 (Performance Analysis of Adaptive Array Antenna for GPS Anti-Jamming)

  • 정태희
    • 한국군사과학기술학회지
    • /
    • 제16권3호
    • /
    • pp.382-389
    • /
    • 2013
  • In anti-jamming GPS receiver, adaptive signal processing techniques in which the radiation pattern of adaptive array antenna of elements may be adaptively changed used to reject interference, clutter, and jamming signals. In this paper, I describes adaptive signal processing technique using the sample matrix inversion(SMI) algorithm. This adaptive signal processing technique can be applied effectively to wideband/narrowband anti-jamming GPS receiver because it does not consider the satellite signal directions and GPS signal power level exists below the thermal noise. I also analyzed the effects of covariance matrix sample size and diagonal loading technique on the system performance of five-element circular array antenna. To attain near optimum performance, more samples required for calculation covariance matrix. Diagonal loading technique reduces the system nulling capability against low-power jamming signals, but this technique improves robustness of adaptive array antenna.

고장점 탐색 장치를 위한 H/W 설계 (H/W Design for Fault Location System on Underground Power Cable System)

  • 이재덕;류희석;정동학;최상봉;남기영;정성환;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.709-711
    • /
    • 2005
  • Developing fault location system for underground power cable which can detect its fault location exactly require very high speed data acquisition and signal processing capability. We are developing fault location system which is different from conventional fault locator. This fault location system monitor underground power cable by using on-line speed current sensor and if there are an accident, it record its transient signal and calculate fault location by analyzing it. Signals which acquired when power cable fault arise, showed transient characteristics and its frequency band is very hish. So, to develop fault location system, we designed special high speed data acquisition and signal processing board. In this thesis, we describe on data acquisition and signal processing H/W design for fault location system on underground power cable.

  • PDF

Development of Signal Monitoring Platform for Sound Source Localization System

  • Myagmar, Enkhzaya;Kwon, Soon Ryang;Lee, Dong Myung
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.961-963
    • /
    • 2012
  • The sound source localization system is used to some area such as robotic system, object localization system, guarding system and medicine. So time delay estimation and angle estimation of sound direction are studied until now. These days time delay estimation is described in LabVIEW which is used to create innovative computer-based product and deploy measurement and control systems. In this paper, the development of signal monitoring platform is presented for sound source localization. This platform is designed in virtual instrument program and implemented in two stages. In first stage, data acquisition system is proposed and designed to analyze time delay estimation using cross correlation. In second stage, data obtaining system which is applied and designed to monitor analog signal processing is proposed.

Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors

  • Yu, Lingyu;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • 제1권2호
    • /
    • pp.185-215
    • /
    • 2005
  • Advanced signal processing techniques have been long introduced and widely used in structural health monitoring (SHM) and nondestructive evaluation (NDE). In our research, we applied several signal processing approaches for our embedded ultrasonic structural radar (EUSR) system to obtain improved damage detection results. The EUSR algorithm was developed to detect defects within a large area of a thin-plate specimen using a piezoelectric wafer active sensor (PWAS) array. In the EUSR, the discrete wavelet transform (DWT) was first applied for signal de-noising. Secondly, after constructing the EUSR data, the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used for the time-frequency analysis. Then the results were compared thereafter. We eventually chose continuous wavelet transform to filter out from the original signal the component with the excitation signal's frequency. Third, cross correlation method and Hilbert transform were applied to A-scan signals to extract the time of flight (TOF) of the wave packets from the crack. Finally, the Hilbert transform was again applied to the EUSR data to extract the envelopes for final inspection result visualization. The EUSR system was implemented in LabVIEW. Several laboratory experiments have been conducted and have verified that, with the advanced signal processing approaches, the EUSR has enhanced damage detection ability.

고속 도플러 편이 환경에서 최적 시간지연을 갖는 다중모드 모노펄스 신호처리에 관한 연구 (Study on Multi-Mode Monopulse Signal Processing System Providing Optimal Time Delay under High Doppler Condition)

  • 이재문;임재성;안희수
    • 한국군사과학기술학회지
    • /
    • 제19권5호
    • /
    • pp.582-589
    • /
    • 2016
  • Multi-mode monopulse system is widely used for satellite terminal like UAV because of high tracking accuracy and low size/weight profile. In order to calculate tracking error, Multi-mode monopulse system utilizes high-order mode signal, and it should have enough C/N(carrier to noise) level therefore tracking system needs narrow band filtering of received satellite beacon signal as much as possible. However, UAV suffers for beacon frequency drift derived from Doppler effect due to satellite figure 8 movement and UAV maneuvering. Therefore wideband signal processing needs to be considered in advance for exact doppler compensation and consequent time delay. In this paper, we propose the multi-stage Digital Signal processing system for beacon signal, which could minimize the signal delay under high Doppler and low C/N condition.

레이저 다이오드를 이용한 정현파 위상변조 간섭에 의한 실시간 극미세 진동 측정에 관한 연구 (A study on real time measuring microscopic movements in sinusoidal phase modulating interferometry using a laser diode)

  • 구자남;염정덕;지철근
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1990년도 추계학술발표회논문집
    • /
    • pp.23-27
    • /
    • 1990
  • A new signal processing system for real time displacement measurement in sinusoidal phase modulating interferometry is described. Although sinusoidal phase modulating interferometry is effective in measuring with high accuracy the displacement of an object, conventional signal processing takes a long time. In this method, detection of the object's displacement is easily achieved by sampling the interference signal at those times that satisfy certain conditions and by processing the sampled signals with electric circuits in real time. The delay time of this signal processing system is < 45${\mu}$s. Specially in this paper we describe all electronic circuit and optical system design

  • PDF

VST 및 FPGA를 이용한 전자표적 생성 및 신호 모의장치 개발 (The Development of the Real Time Target Simulator for the RF Signal of Electronic Warfare using VST and FPGA)

  • 송상헌
    • 한국군사과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.324-334
    • /
    • 2023
  • In this paper, the target simulator for RF signals was developed by using VST(Vector Signal Transceiver) and set by real-time signal processing SW programs. A function to process RF signals using FPGA(Field Programmable Gate Array) board was designed. The system functions capable of data processing, raw signals monitoring, target signals(simulated range, velocity) generating and RF environments data analyzing were implemented. And the characteristics of modulated signal were analyzed in RF environment. All function of programs for processing RF signal have options to store signal data and to manage the data. The validity of the signal simulation was confirmed through verification of simulated signal results.

FPGA 임베디드 프로세서 시스템을 사용한 실시간 SONAR 선호 디스플레이 시스템의 구현 (An Implementation of Real-Time SONAR Signal Display System using the FPGA Embedded Processor System)

  • 김동진;김대웅;박영석
    • 융합신호처리학회논문지
    • /
    • 제12권4호
    • /
    • pp.315-321
    • /
    • 2011
  • 선박이나 함정에서 일반적으로 사용되는 SONAR 신호용 CRT 모니터 디스플레이 시스템은 벡터 주사 방식을 사용한다. 그래서 시스템의 처리회로가 복잡하고, 부품 생산이 폐쇄되어 부품 수급이 어렵고 가격이 고가이다. FPGA 기반 임베디드 프로세서 시스템은 회로를 단순화함과 더불어 코어설계를 쉽게 재구성함으로써 각종 응용 적용에 유연하고, 저가격대로 고속 성능을 제공한다. 본 논문은 기존 CRT시스템의 문제점을 극복하기 위해서 FPGA 임베디드 프로세서 시스템을 사용하여 SONAR 신호 LCD 디스플레이 시스템을 구현하였다. 제안한 접근법은 기존 시스템에 비해 X-Y 편향과 CRT 제어 블록을 FPGA 임베디드 프로세서 시스템으로 대체함으로써 시스템 구성의 단순성과 유연성을 확보할 수 있고, 또한 저가격화를 가능하게 한다. 구현된 시스템은 SONAR 신호를 실시간으로 획득하고 LCD에 디스플레이하는 것이 가능하다.

ECG 신호 원격 처리 시스템의 제어 알고리즘에 관한 연구 (Control algorithm of remote transmission and processing system for ECG signal)

  • 김영서;최장순;정상봉;장원석;홍승홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.742-745
    • /
    • 1988
  • Control algorithm for remote transmission processing system for ECG signals is proposed. Software for the system hardware consists of system control algorithm and signal processing algorithm. Since signal processing algorithm is now under developing, this paper describes the details of system control only.

  • PDF

Fine Feature Sensing and Restoration by Tactile Examination of PVDF Sensor

  • Yoon, Seong-Sik;Kang, Sung-Chul;Lee, Woo-Sub;Choi, Hyouk-Ryeol;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.942-947
    • /
    • 2003
  • An important signal processing problem in PVDF sensor is the restoration of surface information from electric sensing signals. The objectives of this research are to design a new texture sensing system and to develop a new signal processing algorithm for signals from the sensor to be tangibly displayed by tangible interface systems. The texture sensing system is designed to get surface information with high resolution and dynamic range. First, a PVDF sensor is made of piezoelectric polymer (polyvinylidene fluoride) strips molded in a silicon rubber and attached in a rigid cylinder body. The sensor is mounted to a scanning system for dynamic sensing. Secondly, a new signal processing algorithm is developed to restore surface information. The algorithm consists of the two-dimensional modeling of the sensor using an identification method and inverse filtering from sensing signals into estimated surface information. Finally the two-dimensional surface information can be experimentally reconstructed from sensing signals using the developed signal processing algorithm.

  • PDF