• Title/Summary/Keyword: Signal energy

Search Result 1,924, Processing Time 0.031 seconds

Development of the Radiological Range of Positron Emitting Radionuclides (양전자 방출 핵종의 방사선학적 비정에 대한 제안)

  • Jang, Dong-Gun;Lee, Sang-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.849-853
    • /
    • 2021
  • PET images used in medical diagnoses are created using positron emitting radionuclides. The radiation used for imaging is generated at 0.511 MeV by p-annihilation. The CSDA range is the distance the particle radiation flew physically, and it is different from the range shown in PET images. This study proposes a novel method that uses radiological criteria to measure this range. The experiment was conducted by applying the MCNP6 simulation to positron emitting nuclides 18F, 11C, 13N, and 15O. Radiological criteria were based on the location of the p-annihilation event, which is also the image signal. Results showed the radiological range of positrons to be 2.3, 3.9, 5.0, and 7.9 mm for 18F, 11C, 13N, and 15O, respectively. The higher the positron energy, the larger its difference from the CSDA range. Positron emitting nuclide is being developed and studied as a nuclide for dosimetry or radiotherapy. Further research needs to be conducted into various positron ranges.

Analysis of acoustic emission parameters according to failure of rock specimens (암석시편 파괴에 따른 acoustic emission 특성인자 분석)

  • Lee, Jong-Won;Oh, Tae-Min;Kim, Hyunwoo;Kim, Min-Jun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.657-673
    • /
    • 2019
  • A monitoring method based on acoustic emission (AE) sensor has been widely used to evaluate the damage of structures in underground rock. The acoustic emission signal generated from cracking in material is analyzed as various acoustic emission parameters in time and frequency domain. To investigate from initial crack generation to final failure of rock material, it is important to understand the characteristics of acoustic emission parameters according to the stress ratio and rock strength. In this study, uniaxial compression tests were performed using very strong and weak rock specimen in order to investigate the acoustic emission parameters when the failure of specimen occurred. In the results of experimental tests, the event, root-mean-square (RMS) voltage, amplitude, and absolute energy of very strong rock specimen were larger than those of the weak rock specimen with an increase of stress ratio. In addition, the acoustic emission parameters related in frequency were more affected by specification (e.g., operation and resonant frequency) of sensors than the stress ratio or rock strength. It is expected that this study may be meaningful for evaluating the damage of underground rock when the health monitoring based on the acoustic emission technique will be performed.

Corrosion Behaviors of Dental Implant Alloy after Micro-sized Surface Modification in Electrolytes Containing Mn Ion

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the corrosion behaviors of dental implant alloy after microsized surface modification in electrolytes containing Mn ion. Materials and Methods: $Mn-TiO_2$ coatings were prepared on the Ti-6Al-4V alloy for dental implants using a plasma electrolytic oxidation (PEO) method carried out in electrolytes containing different concentrations of Mn, namely, 0%, 5%, and 20%. Potentiodynamic method was employed to examine the corrosion behaviors, and the alternatingcurrent (AC) impedance behaviors were examined in 0.9% NaCl solution at $36.5^{\circ}C{\pm}1.0^{\circ}C$ using a potentiostat and an electrochemical impedance spectroscope. The potentiodynamic test was performed with a scanning rate of $1.667mV\;s^{-1}$ from -1,500 to 2,000 mV. A frequency range of $10^{-1}$ to $10^5Hz$ was used for the electrochemical impedance spectroscopy (EIS) measurements. The amplitude of the AC signal was 10 mV, and 5 points per decade were used. The morphology and structure of the samples were examined using field-emission scanning electron microscopy and thin-film X-ray diffraction. The elemental analysis was performed using energy-dispersive X-ray spectroscopy. Result: The PEO-treated surface exhibited an irregular pore shape, and the pore size and number of the pores increased with an increase in the Mn concentration. For the PEO-treated surface, a higher corrosion current density ($I_{corr}$) and a lower corrosion potential ($E_{corr}$) was obtained as compared to that of the bulk surface. However, the current density in the passive regions ($I_{pass}$) was found to be more stable for the PEO-treated surface than that of the bulk surface. As the Mn concentration increased, the capacitance values of the outer porous layer and the barrier layer decreased, and the polarization resistance of the barrier layers increased. In the case of the Mn/Ca-P coatings, the corroded surface was found to be covered with corrosion products. Conclusion: It is confirmed that corrosion resistance and polarization resistance of PEO-treated alloy increased as Mn content increased, and PEO-treated surface showed lower current density in the passive region.

Design of Remote Field Eddy Current Sensor for Water-Wall Tube Inspection using Simulation (시뮬레이션을 활용한 유동층보일러 수냉벽튜브 검사용 원격장 와전류 탐상 센서 설계)

  • Gil, Doo Song;Kwon, Chan Wool;Cho, Yong-Sang;Kim, Hak-Joon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • Thermal power generation accounts for the highest percentage of domestic power generation, among which coal-fired boiler generation accounts for the highest percentage. Coal boilers generate harmful substances and fine dust during coal combustion and have a serious effect on air pollution. So, fluidized-bed boilers have been introduced as eco-friendly coal boilers. It uses a fluid medium which affect the combustion temperature of coal. Because of it fluidized-bed boilers emit less pollutants than original one. Water-wall tubes play an important role in this fluidized bed boiler. Due to the fluid medium, the wall damage is more severe than the existing boiler. However, there is no quantitative maintenance technique in Korea yet. Remote field eddy current testing is a non-destructive evaluation technique that is often used for inspection of inner and outer wall of tube. it can inspect with non-contact and high speed. However, it is an inspection that proceeds from inside the pipe, and the water-wall tube is not able to enter the interior. In this study, we designed and simulated an external remote field eddy current sensor suitable for water-wall tube of a fluidized - bed boiler using simulations. By obtaining a signal similar to the existing remote field eddy current test, the criteria for the external remote field eddy current sensor design can be presented.

Analysis on Normal Ionospheric Trend and Detection of Ionospheric Disturbance by Earthquake (정상상황 전리층 경향 분석 및 지진에 의한 전리층 교란검출)

  • Kang, Seonho;Song, Junesol;Kim, O-jong;Kee, Changdon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.49-56
    • /
    • 2018
  • As the energy generated by earthquake, tsunami, etc. propagates through the air and disturbs the electron density in the ionosphere, the perturbation can be detected by analyzing the ionospheric delay in satellite signal. The electron density in the ionosphere is affected by various factors such as solar activity, latitude, season, and local time. To distinguish from the anomaly, therefore, it is required to inspect the normal trend of the ionosphere. Also, as the perturbation magnitude diminishes by distance it is necessary to develop an appropriate algorithm to detect long-distance disturbances. In this paper, normal condition ionosphere trend is analyzed via IONEX data. We selected monitoring value that has no tendency and developed an algorithm to effectively detect the long-distance ionospheric disturbances by using the lasting characteristics of the disturbances. In the end, we concluded the $2^{nd}$ derivative of ionospheric delay would be proper monitoring value, and the false alarm with the developed algorithm turned out to be 1.4e-6 level. It was applied to 2011 Tohoku earthquake case and the ionospheric disturbance was successfully detected.

A Study on the Usefulness of Copper Filters Made with 3D Printers in Longbone Examination Using Long Length Detector (장골 검출기를 이용한 장골 검사에서 3D 프린터로 제작한 구리 필터의 유용성 연구)

  • Kim, Woo-Young;Seo, Hyun-Soo;Han, Bong-Ju;Yoon, Myeong-Seong;Lee, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.607-613
    • /
    • 2021
  • Long-bone examination is mainly used for inspection of the lower extremities. Recently, a long length detector (FXRD-1751S, VIEWORKS, Korea) with three digital detectors attached has been developed. High energy X-rays are used because pelvic areas require high image quality. In this case, X-rays are transmitted a lot in thin areas such as an ankle, and it is not suitable for diagnosing an image. Therefore, this study use copper filters made with 3D printers to increase image quality in the Long-bone inspection. A copper filter was manufactured in consideration of the overall thickness of the lower part. The experiment was conducted in anterior-posterior (AP) and lateral (LAT) positions, depending on the presence or absence of the filter. 5x5 pixels of region of interest (ROI) were selected from the pelvis, knee, and ankle areas. X-rays were irradiated under the conditions of 70 kVp and 40 mAs for AP, 80 kVp, and 63 mAs for lat when without filters, 90 kVp and 80 mAs for AP, 90 kVp and 100 mAs for lat when with filters. signal to noise ratio(SNR) ratio and contrast to noise (CNR) values were measured 1106.38, 14.34 before applying the filter and 1189.32, 70.43 after the filter. For the knee area, 650.44, 97.61 before applying the filter, and 1013.17, 444.24 after applying the filter. For the ankle area, 206.65, 23.68 before applying the filter and 993.50, 136.11 after applying the filter. In the Long-bone examination, SNR and CNR were greatly measured when the filter was applied, confirmed the availability of using the copper additional filter.

Development of analytical method for the isotope purity of pure D2 gas using high-precision magnetic sector mass spectrometer

  • Chang, Jinwoo;Lee, Jin Bok;Kim, Jin Seog;Lee, Jin-Hong;Hong, Kiryong
    • Analytical Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.205-211
    • /
    • 2022
  • Deuterium (D) is an isotope with one more neutron number than hydrogen (H). Heavy elements rarely change their chemical properties with little effect even if the number of neutrons increases, but low-mass elements change their vibration energy, diffusion rate, and reaction rate because the effect cannot be ignored, which is called an isotope effect. Recently, in the semiconductor and display industries, there is a trend to replace hydrogen gas (H2) with deuterium gas (D2) in order to improve process stability and product quality by using the isotope effect. In addition, as the demand for D2 in industries increases, domestic gas producers are making efforts to produce and supply D2 on their own. In the case of high purity D2, most of them are produced by electrolysis of heavy water (D2O), and among D2, hydrogen deuteride (HD) molecules are present as isotope impurities. Therefore, in order to maximize the isotope effect of hydrogen in the electronic industry, HD, which is an isotope impurity of D2 used in the process, should be small amount. To this end, purity analysis of D2 for industrial processing is essential. In this study, HD quantitative analysis of D2 for high purity D2 purity analysis was established and hydrogen isotope RM (Reference material) was developed. Since hydrogen isotopes are difficult to analyze with general gas analysis instrument, they were analyzed using a high-precision mass spectrometer (Gas/MS, Finnigan MAT271). High purity HD gas was injected into Gas/MS, sensitivity was determined by a signal according to pressure, and HD concentrations in two bottles of D2 were quantified using the corresponding sensitivity. The amount fraction of HD in each D2 was (4518 ± 275) μmol/mol, (2282 ± 144) μmol/mol. D2, which quantifies HD amount using the developed quantitative analysis method, will be manufactured with hydrogen isotope RM and distributed for quality management and maintenance of electronic industries and gas producers in the future.

The estrogen-related receptor γ modulator, GSK5182, inhibits osteoclast differentiation and accelerates osteoclast apoptosis

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.266-271
    • /
    • 2021
  • Estrogen-related receptor γ (ERRγ), a member of the orphan nuclear receptor family, is a key mediator in cellular metabolic processes and energy homeostasis. Therefore, ERRγ has become an attractive target for treating diverse metabolic disorders. We recently reported that ERRγ acts as a negative regulator of osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In the present study, we explored the effects of an ERRγ-specific modulator, GSK5182, on ERRγ-regulated osteoclast differentiation and survival. Interestingly, GSK5182 increased ERRγ protein levels much as does GSK4716, which is an ERRγ agonist. GSK5182 inhibited osteoclast generation from bone-marrow-derived macrophages without affecting cytotoxicity. GSK5182 also attenuated RANKL-mediated expression of cFos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), pivotal transcription factors for osteoclastogenesis. Arrested osteoclast differentiation was associated with reduced RANK expression, but not with the M-CSF receptor, c-Fms. GSK5182 strongly blocked the phosphorylation of IκBα, c-Jun N-terminal kinase, and extracellular signal-regulated kinase in response to RANKL. GSK5182 also suppressed NF-κB promoter activity in a dose-dependent manner. In addition to osteoclastogenesis, GSK5182 accelerated osteoclast apoptosis by caspase-3 activation. Together, these results suggest that GSK5182, a synthetic ERRγ modulator, may have potential in treating disorders related to bone resorption.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

A Study for the Efficient Improvement Measures of Military EMP Protection Ability (국방 EMP 방호능력의 효율적 개선을 위한 방안 연구)

  • Jung, Seunghoon;An, Jae-Choon;Hwang, Yeung-Kyu;Jung, Hyun-Ju;Shin, Yongtae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.1
    • /
    • pp.219-227
    • /
    • 2017
  • Current military command information system uses electronic equipment a lot on which semiconductor chip is attached. It seems its' importance will increase more with latest information communication technology developing. Electronic equipment which uses electricity contains regular tolerance to high output electric signal. And EMC specification is the standardized of this electronic equipment's tolerance. On the other hand, the Institute of Atomic Energy Research has ever declared that high output electromagnetic pulse(EMP) will be broken out within the radius of 170Km when 10kt nuclear explosion occurs at an altitude of 40Km above Seoul. Then, the region suffer from the damage of most electronic equipments. Therefore, the norm to protect the influences in that case is defined by EMP protection specification. Most common electronic equipments meet the EMC norm, but there is no way to check whether they meet the EMP norm or not. That is because it is difficult to check whether they meet EMP protection norm and is on the matter of cost. Except inevitable cases, there is no review of checking whether they meet the norm or not. Considering the above, in this research, we speculate about the measures to improve military EMP protection ability by analyzing the EMC-EMP correlation and checking the EMP protection ability of general electronic equipment through the analysis.