• Title/Summary/Keyword: Signal converter

Search Result 944, Processing Time 0.029 seconds

An Efficient High Voltage Level Shifter using Coupling Capacitor for a High Side Buck Converter

  • Seong, Kwang-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.125-134
    • /
    • 2016
  • We propose an efficient high voltage level shifter for a high side Buck converter driving a light-emitting diode (LED) lamp. The proposed circuit is comprised of a low voltage pulse width modulation (PWM) signal driver, a coupling capacitor, a resistor, and a diode. The proposed method uses a property of a PWM signal. The property is that the signal repeatedly transits between a low and high level at a certain frequency. A low voltage PWM signal is boosted to a high voltage PWM signal through a coupling capacitor using the property of the PWM signal, and the boosted high voltage PWM signal drives a p-channel metal oxide semiconductor (PMOS) transistor on the high side Buck converter. Experimental results show that the proposed level shifter boosts a low voltage (0 to 20 V) PWM signal at 125 kHz to a high voltage (370 to 380 V) PWM signal with a duty ratio of up to 0.9941.

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

Study on Small-signal Modeling and Controller Design of DC-DC Dual Active Bridge Converters (DC-DC Dual Active Bridge 컨버터의 소신호 모델링 및 제어기 설계에 관한 연구)

  • Lee, Won-Bin;Choi, Hyun-Jun;Cho, Jin-Tae;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.159-165
    • /
    • 2017
  • Small-signal modeling and controller design methodology are proposed to improve the dynamics and stability of a DC-DC dual active bridge (DAB) converter. The state-space average method has a limitation when applied to the DAB converter because its state variables are nonlinear and have zero average values in a switching period. Therefore, the small-signal model and the frequency response of the DAB converter are derived and analyzed using a generalized average method instead of conventional modeling methods. The design methodology of a lead-lag controller instead of the conventional proportional-integral controller is also proposed using the derived small-signal model. The accuracy and performance of the proposed small-signal model and controller are verified by simulation and experimental results with a 500 W prototype DAB converter.

Practical Design Methodology of Dual Active Bridge Converter as Isolated Bi-directional DC-DC Converter for Solid State Transformer (Solid State Transformer를 위한 양방향 Dual Active Bridge DC-DC 컨버터의 설계 기법)

  • Choi, Hyun-Jun;Lee, Won-Bin;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2017
  • Proper design guides are proposed for a practical dual-active bridge (DAB) converter based on the mathematical model on the steady state. The DAB converter is popular in bidirectional application due to its zero-voltage capability and easy bidirectional operation for seamless control, high efficiency, and performance. Some design considerations are taken to overcome the limitation of the DAB converter. The practical design methodology of power stage is discussed to minimize the conduction and switching losses of the DAB converter. Small-signal model and frequency response are derived and analyzed based on the generalized average method, which considers equivalent series resistance, to improve the dynamics, stability, and reliability with voltage regulation of the practical DAB converter. The design of closed-loop control is discussed by the derived small-signal model to obtain the pertinent gain and phase margin in steady-state operation. Experimental results of a 3.3 kW prototype of DAB converter demonstrate the validity and effectiveness of the proposed methods.

A Driving Scheme Using a Single Control Signal for a ZVT Voltage Driven Synchronous Buck Converter

  • Asghari, Amin;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • This paper deals with the optimization of the driving techniques for the ZVT synchronous buck converter proposed in [1]. Two new gate drive circuits are proposed to allow this converter to operate by only one control signal as a 12V voltage regulator module (VRM). Voltage-driven method is applied for the synchronous rectifier. In addition, the control signal drives the main and auxiliary switches by one driving circuit. Both of the circuits are supplied by the input voltage. As a result, no supply voltage is required. This approach decreases both the complexity and cost in converter hardware implementation and is suitable for practical applications. In addition, the proposed SR driving scheme can also be used for many high frequency resonant converters and some high frequency discontinuous current mode PWM circuits. The ZVT synchronous buck converter with new gate drive circuits is analyzed and the presented experimental results confirm the theoretical analysis.

Large-Signal Transient Analysis of a Self-Driven Active-Clamp Forward Converter (자기 구동 능동 클램프 포워드 컨버터의 대신호 과도 특성 해석)

  • Bong Sang-Cheol;Kim Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1235-1238
    • /
    • 2004
  • This paper presents the large-signal transient analysis of a self-driven active-clamp forward converter, eliminating the extra drive circuit for the active clamp switch. The operation principle of the converter was presented and experiential results were used to verify the analyzed results. A 50-W prototype converter built and tested it. From the tested results, input transient response and load transient response of the converter were established.

  • PDF

Steady State Analysis & Small Signal Modeling of Variable Duty Cycle Controlled Three Level LLC Converter (듀티 제어가 적용된 3레벨 LLC 컨버터의 정상상태 및 소신호 모델링)

  • Humaira, Hussain;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.317-319
    • /
    • 2019
  • In this paper, a three level duty cycle controlled half bridge LLC converter for EV charger application is presented. The topology and operating regions of the converter are discussed. The equations of the converter are derived in time domain. A small signal model of the converter is developed by perturbation and linearization of the steady state model about their operating point using Extended Describing function.

  • PDF

Control Technique of Triple-Active-Bridge Converter and Its Effective Controller Design Based on Small Signal Model for Islanding Mode Operation (단독운전 모드 동작에서의 Triple-Active-Bridge 컨버터 제어 기법 및 소신호 모델을 기반으로 한 제어기 설계)

  • Jeon, Chano;Heo, Kyoung-Wook;Ryu, Myung-Hyo;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.192-199
    • /
    • 2022
  • In DC distribution systems, a TAB converter employing multiple transformers is one of the most widely used topologies due to its high power density, modularizability, and cost-effectiveness. However, the conventional control technique for a grid-connected mode in the TAB converter cannot maintain its reliability for an islanding mode under a blackout situation. In this paper, the islanding mode control technique is proposed to solve this issue. To verify the relative stability and dynamic characteristics of the control technique, small-signal models of both the grid connected and the islanding mode are derived. Based on the small-signal models, PI controllers are designed to provide suitable power control. The proposed control technique, the accuracy of small-signal models, and the performance of the controllers are verified by simulations and experiments with a 1-kW prototype TAB converter.

A Time-to-Digital Converter Using Dual Edge Flip Flops for Improving Resolution (분해능 향상을 위해 듀얼 에지 플립플롭을 사용하는 시간-디지털 변환기)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.816-821
    • /
    • 2019
  • A counter-type time-to-digital converter was designed using a dual edge T flip-flop. The time-to-digital converter was designed with a $0.18{\mu}m$ CMOS process at a supply voltage of 1.5 volts. In a typical time-to-digital converter, when the period of the clock is T, a conversion error corresponding to the period of the clock occurs due to the asynchronism between the input signal and the clock. However, the clock of the time-to-digital converter proposed in this paper is generated in synchronization with the start signal which is the input signal. As a result, conversion errors that may occur due to asynchronization of the start signal and the clock do not occur. The flip-flops constituting the counters are composed of dual-edge flip-flops operating at the positive and negative edges of the clock to improve the resolution.

Design of D/A Converter using the Multiple-valued Logic (다치논리를 적용한 D/A 변환기의 설계)

  • 이철원;한성일;최영희;성현경;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2621-2624
    • /
    • 2003
  • In this paper, we designed 12Bit DAC(Digital to Analog Converter) that applied to multiple-valued logic system to Binary system. The proposed D/A Converter structure consists of the Binary to Quaternary Converter(BQC) and Quaternary to Analog Converter(QAC). The BQC converts the two input binary signals to the one Digit Quaternary output signal. The QAC converts the Quaternary input signal to the Analog output signal. The proposed DAC structure can implement voltage mode DAC that high resolution low power consumption with reduced chip area. And also, it has advantage of the easy expansion of resolution and fast settling time.

  • PDF