• Title/Summary/Keyword: Signal amplification

Search Result 248, Processing Time 0.023 seconds

Cascaded Raman fiber amplifier operating at 1.3.mu.m using WDM couplers

  • Chang, Do-Il;Kong, Hong-Jin;Chernikov, S.V.;Guy, M.-J.;Taylor, J. R.
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.110-115
    • /
    • 1997
  • We report effcient cascaded Raman generation and signal amplification at 1.3.mu.m achieved in a ring resonator constructed solely from fiber components, i.e. fusion WDM couplers. Low-loss single-mode fiber with moderate $GeO_2$ content (18 mole %) is used as an active medium and pumped by a Nd:YAG laser at 1.064.mu.m. In a resonant cascaded geometry, this generates the third Stokes line at 1.24.mu.m, which acts as a pump for signal wavelength around 1.3.mu.m. A DFB laser operating at 1.315.mu.m is used to provide an input signal. An output signal powers up to 20 dBm (100 mW) with a 28 dB Raman gain are attained, where the Nd:YAG pump power is 3.4 W. It is also shown experimentally that it is important to use optical filters to suppress feedback from the resonator, permitting high Raman gain and good signal quality.

The Design of Smart Antenna Structures for RF Repeater (이동통신 중계기용 스마트 안테나 구조 설계)

  • Cho, Dae-Young;Kim, Kye-Won;Lee, Seung-Goo;Kim, Min-Sang;Kim, Kil-Yung;Park, Byeong-Hoon;Ko, Hak-Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2013
  • The amplification rate of a RF repeater is limited by the feedbacked signals from the same repeater. And an ICS (Interference Cancellation System) repeater has been developed to remove the feedbacked signals. The ICS repeater estimates the amplitudes and the phases of the feedbacked signals and removes the estimated feedback signals from the received input signal of the repeater. However, it requires lots of hardware complexity and this leads to the increase the cost of the repeater. Moreover, the ICS repeater can not solve the pilot pollution problems. To solve these problems, we have studied the implementation and adaptation of smart antenna system for RF repeaters. We have designed a smart antenna system with a switching beam structure in order to reduce the hardware and computational complexity. After analyzing the proposed smart antenna system, we found out that the amplification rate of the proposed repeater increases 23dB compare to the amplification rate of ICS repeater and the output SINR increases 6dB compare to the ICS repeater.

THE EFFECTS OF ZINC DURING VISUAL ADAPTATION OF VERTEBRATE EYE

  • Kim, Hyun-Jung
    • Journal of Photoscience
    • /
    • v.2 no.2
    • /
    • pp.63-67
    • /
    • 1995
  • Zinc plays a key role in genetic expression, cell division, and growth and is essential for the function of more than 200 enzymes; effects of zinc deficiency induce many syndromes, including abnormal visual adaptation. The pigment epithelium (EP) contains high concentrations of zinc in humans and in animals and it participates in threshold elevation, visual sensitivity increment, and acceleration of rhodopsin regeration during visual adaptation. The origin of c-wave of electroretinogram(ERG) is not only pigment epithelium as shown in present research, but also other cell layers, perhaps the photoreceptors. We propose zinc as a candidate for an internal messenger which participates in signal amplification.

  • PDF

A Resonant FSK Transmitter Using Antenna Impedance (안테나 임피던스를 이용한 공진형 FSK 송신기)

  • Hwang, Sun-Do;Cho, Kyu-Min;In, Chi-Gak
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1134-1136
    • /
    • 2002
  • This paper proposes a FSK(Frequency Shift Keying) transmitter which has a inverter for power amplification instead of linear amplifier. As it can generate large signal using resonant circuit under the low voltage source even if the impedance of antenna is large as like a loop antenna of TWC(Train to Way-side Communication) system. In this paper, the proposed fully digital controlled transmitter including FSK modulation is presented and its control schemes are discussed.

  • PDF

Amplification of Fiber Optic BOTDA Sensor Pulsed Signal Using Erbium-doped Fiber Amplifier (광섬유증폭기를 이용한 광섬유 BOTDA센서의 펄스신호 증폭특성)

  • 박형준;고광락;권일범
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.330-331
    • /
    • 2003
  • 분포형 광섬유 센서시스템은 일정한 길이의 연속적인 광섬유 및 광케이블을 매질로 하여 길이 방향에서 생기는 투과율 또는 산란 특성의 변화를 통해 물리량의 변화와 그 위치를 감지하는 시스템을 말한다. 그 중에서 광섬유 내부의 브릴루앙 산란효과를 이용하여 광케이블 주위에 진동, 압력등에 매우 민감한 분포형 광섬유센서를 구성하고 외부로부터의 침입 유무와 위치를 파악함과 동시에 주요시설물의 감시 및 진단이 가능하도록 한다. (중략)

  • PDF

All-optical Regenerator Using Semi-reflective Semiconductor Optical Amplifier

  • Kim T.Y.;Kim J.Y.;Han S.K.
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.11-15
    • /
    • 2006
  • We have proposed and theoretically verified an optical regenerator using a single semi-reflective semiconductor optical amplifier (SR-SOA). To explain the operation characteristics and the operation condition of the proposed opticalregenerator, the simplified gain model for the SR-SOA is introduced and confirmed by comparing the result of the SOA simulation based on the transfer matrix method (TMM). The simulation results show that both extinction ratio (ER) enhancement and signal amplification can be achieved in the proposed regenerator.

Investigation of Amplifying Mechanism in an t-Band Erbium-Doped Fiber Amplifier Pumped by a 980 nm Pump

  • Lee, Dong-Han;Lee, Han-Hyub;Oh, Jung-Mi;Kim, Byung-Jun
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.67-71
    • /
    • 2003
  • For a more detailed understanding of the mechanism of an L-band erbium-doped fiber amplifier, we investigated 980 nm absorption, signal amplification and forward and backward amplified spontaneous emission along the erbium-doped fiber. In addition, we compared performances of the erbium-doped fiber amplifier with and without a fiber Bragg grating.

PCR-based Specific Detection of Ralstonia solanacearum by Amplification of Cytochrome c1 Signal Peptide Sequences

  • Kang, Man-Jung;Lee, Mi-Hee;Shim, Jae-Kyung;Seo, Sang-Tae;Shrestha, Rosemary;Cho, Min-Seok;Hahn, Jang-Ho;Park, Dong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1765-1771
    • /
    • 2007
  • A polymerase chain reaction (PCR)-based method was developed to detect the DNA of Ralstonia solanacearum, the causal agent of bacterial wilt in various crop plants. One pair of primers (RALSF and RALSR), designed using cytochrome c1 signal peptide sequences specific to R. solanacearum, produced a PCR product of 932 bp from 13 isolates of R. solanacearum from several countries. The primer specificity was then tested using DNA from 21 isolates of Ralstonia, Pseudomonas, Burkholderia, Xanthomonas, and Fusarium oxysporum f. sp. dianthi. The specificity of the cytochrome c1 signal peptide sequences in R. solanacearum was further confirmed by a DNA-dot blot analysis. Moreover, the primer pair was able to detect the pathogen in artificially inoculated soil and tomato plants. Therefore, the present results indicate that the primer pair can be effectively used for the detection of R. solanacearum in soil and host plants.

Doppler Radar System for Noncontact Bio-signal measurement (비접촉 방식의 생체 신호 측정을 위한 도플러 레이더 시스템)

  • Shin, Jae-Yeon;Cho, Sung-Pil;Jang, Byung-Jun;Park, Ho-Dong;Lee, Yun-Soo;Lee, Kyoung-Joung
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.357-359
    • /
    • 2009
  • In this paper, the 2.4GHz doppler radar system consisting of the doppler radar module and a baseband module were designed to detect heartbeat and respiration signal without direct skin contact. A bio-radar system emits continuous RF signal of 2.4GHz toward human chest, and then detects the reflected signal so as to investigate cardiopulmonary activities. The heartbeat and respiration signals acquired from quadrature signal of the doppler radar system are applied to the pre-processing circuit, amplification circuit, and the offset circuit of the baseband module. ECG(electrocardiogram) and reference respiration signals are measured simultaneously to evaluate the doppler radar system. As a result, the respiration signal of doppler radar signal is detected to 1m without complex digital signal processing. The sensitivity and calculated from I/Q respiration signal were $98.29{\pm}1.79%$, $97.11{\pm}2.75%$, respectively, and positive predictivity were $98.11{\pm}1.45%$, $92.21{\pm}10.92%$, respectively. The sensitivity and positive predictivity calculated from phase and magnitude of the doppler radar were $95.17{\pm}5.33%$, $94.99{\pm}5.43%$, respectively. In this paper, we confirmed that noncontact real-time heartbeat and respiration detection using the doppler radar system has the possibility and limitation.

  • PDF

A low noise, wideband signal receiver for photoacoustic microscopy (광음향 현미경 영상을 위한 저잡음 광대역 수신 시스템)

  • Han, Wonkook;Moon, Ju-Young;Park, Sunghun;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.507-517
    • /
    • 2022
  • The PhotoAcoustic Microscopy (PAM) has been proved to be a useful tool for biological and medical applications due to its high spatial and contrast resolution. PAM is based on transmission of laser pulses and reception of PA signals. Since the strength of PA signals is generally low, not only are high-performance optical and acoustic modules required, but high-performance electronics for imaging are also particularly needed for high-quality PAM imaging. Most PAM systems are implemented with a combination of several pieces of equipment commercially available to receive, amplify, enhance, and digitize PA signals. To this end, PAM systems are inevitably bulky and not optimal because general purpose equipment is used. This paper reports a PA signal receiving system recently developed to attain the capability of improved Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of PAM images; the main module of this system is a low noise, wideband signal receiver that consists of two low-noise amplifiers, two variable gain amplifiers, analog filters, an Analog to Digital Converter (ADC), and control logic. From phantom imaging experiments, it was found that the developed system can improve SNR by 6.7 dB and CNR by 3 dB, compared to a combination of several pieces of commercially available equipment.