• Title/Summary/Keyword: Signal Propagation Direction

Search Result 42, Processing Time 0.025 seconds

Transverse Wave Propagation in [ab0] Direction of Silicon Single Crystal

  • Yun, Sangjin;Kim, Hye-Jeong;Kwon, Seho;Kim, Young H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.381-388
    • /
    • 2015
  • The speed and oscillation directions of elastic waves propagating in the [ab0] direction of a silicon single crystal were obtained by solving Christoffel's equation. It was found that the quasi waves propagate in the off-principal axis, and hence, the directions of the phase and group velocities are not the same. The maximum deviation of the two directions was $7.2^{\circ}$. Two modes of the pure transverse waves propagate in the [110] direction with different speeds, and hence, two peaks were observed in the pulse echo signal. The amplitude ratio of the two peaks was dependent on the initial oscillating direction of the incident wave. The pure and quasi-transverse waves propagate in the [210] direction, and the oscillation directions of these waves are perpendicular to each other. The skewing angle of the quasi wave was calculated as $7.14^{\circ}$, and it was measured as $9.76^{\circ}$. The amplitude decomposition in the [210] direction was similar to that in the [110] direction, since the oscillation directions of these waves are perpendicular to each other. These results offer useful information in measuring the crystal orientation of the silicon single crystal.

A STUDY ON THE RADIO PROPAGATION IN THE KOREAN IONOSPHERE (한반도 전리층에서의 전파 전파연구)

  • 배석희;최규홍;육재림;김홍익;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.69-88
    • /
    • 1992
  • The effects of the ionosphere on the radio wave propagation are scattering of radio waves, attenuation, angle error, ranging error, and time delay. If ionospheric conditions are suitable, the charged particles can remove energy from radio waves and thus attenuate the signal. Also, a radio wave traveling a path along which the electron density is not constant undergoes changes in direction, positon and time of propagation. The present study is based on Korean ionospheric data obtained at the AnYang Radio Research Institute from Jan. 1985 through Oct. 1989. The data are used to simulate the Korean ionosphere following the Chapman law. The effects of the model ionosphere on the radio wave propagation, such as the angle, position error, time delay, and the attenuation, are studied for the various cases of the wave frequency and the altitude.

  • PDF

Signal Coverages of DGPS Beacon Stations in Korea (우리나라 DGPS 보정국의 위치보정신호의 이용범위)

  • Ahn, Jang-Young;Choi, Chan-Moon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • For the purpose of comparison between the designed coverage and actual coverage of Korean DGPS (Differential Global Position System) beacon stations, we have received the ship‘s positions with states and IDs of their stations on the navigation route of Jeju-Tianjin by automatic selection mode of DGPS receiver and on them of Jeju-Inchun and Jeju-Vladibostok by manual mode. Also in case that some obstructions were on propagation routes from DGPS beacon stations to receiving positions, a restriction on available ranges of DGPS beacon signals was investigated. The results obtained are as follows : 1. The coverage of Korean DGPS beacon stations was designed 100NM (Nautical mails) at 40.0dB(over ${\mu}$V/m). But the actual coverages of them according to their stations and propagation routes were 0.3-3.6 times as wide as designed coverage. 2. In case that the propagation route of beacon signals from DGPS beacon stations was on the sea, the propagation distance of north direction from the stations was longer than south direction. 3. The coverages of Echongdo and Ulungdo stations were 366NM on the yellow sea and 342.3NM on the east sea of Korea respectively, and were widest than any other stations. 4. The coverage of Marado station on the south and yellow seas of Korea was very unstable because of the Halla mountain on the propagation route. Maximum receiving range to be measured by automatic selection mode of DGPS receiver was 145NM on the route of Jeju-Tianjin on June 22-July 1, 2002. Minimum receiving range to be not measured by manual selection mode was 28.7NM on the route of Jeju-Inchun on June 26-28, 2003

Active damage localization technique based on energy propagation of Lamb waves

  • Wang, Lei;Yuan, F.G.
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.201-217
    • /
    • 2007
  • An active damage detection technique is introduced to locate damage in an isotropic plate using Lamb waves. This technique uses a time-domain energy model of Lamb waves in plates that the wave amplitude inversely decays with the propagation distance along a ray direction. Accordingly the damage localization is formulated as a least-squares problem to minimize an error function between the model and the measured data. An active sensing system with integrated actuators/sensors is controlled to excite/receive $A_0$ mode of Lamb waves in the plate. Scattered wave signals from the damage can be obtained by subtracting the baseline signal of the undamaged plate from the recorded signal of the damaged plate. In the experimental study, after collecting the scattered wave signals, a discrete wavelet transform (DWT) is employed to extract the first scattered wave pack from the damage, then an iterative method is derived to solve the least-squares problem for locating the damage. Since this method does not rely on time-of-flight but wave energy measurement, it is more robust, reliable, and noise-tolerant. Both numerical and experimental examples are performed to verify the efficiency and accuracy of the method, and the results demonstrate that the estimated damage position stably converges to the targeted damage.

A Study of the Three-Dimension Acoustic Field Analysis using the Type-M CIP Method (M형 CIP법을 이용한 3차원 음장해석에 관한 연구)

  • Lee, Chai-Bong;Oh, Sung-Qwan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.220-224
    • /
    • 2009
  • The authors have investigated the acoustic field analysis using the Constrained Interpolation Profile(CIP) Method recently proposed by Yabe. The present study has examined the calculation accuracy of the three-dimensional (3-D) acoustic field analysis using the type-M CIP method. In this paper we show phase error of type-M CIP method and the dependence on the wave-propagation direction in the type-M CIP acoustic field analysis, and then demonstrate that it is effective for acoustic field analysis, compared with the FDTD and the exact solution. We show the dependency on the propagation angle in the CIP acoustic field analysis.

  • PDF

AE Source Location by the Discrimination of Wave Propagation Paths in Cylindrical Vessels (실린더형 용기에서의 신호전파경로 비교를 이용한 음향방출 위치표정)

  • Yoon, D.J.;Kim, Y.H.;Kwon, O.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.1
    • /
    • pp.84-90
    • /
    • 1990
  • By discriminating the wave propagation paths in cylindrical vessels, a technique for AE source location has been proposed. This method is based on the path difference between several propagating directions from a source to a sensor. One sensor can receive multiple waveforms sequentially including a direct arrival and several others propagated through the circumferential direction. An wave front normally propagates in all directions and as many waveforms can reach the sensor until the signal faded out by attenuation. Only the first four arrivals suffice the condition for calculating the source location. The proposed method was examined for an actual cylindrical vessel by the source location experiment using simulated AE sources. The test showed very promising results and the method can be utilized for a simple AE source location without multi-channel instruments.

  • PDF

Analysis of the Causes of Errors in Sound Wave Phase Meter (음파위상측정기의 오차 원인에 대한 분석)

  • Kim, So-Hee;Lee, Ki-Won
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.323-328
    • /
    • 2019
  • Recently, a sound wave phase meter (SWPM) that can directly measure the pressure waveform of sound waves in free space has been reported, and the development of educational experimental equipment using this meter is in progress. One of the main advantages of using this meter is that wavelengths can be obtained directly from the crests and troughs of the measured pressure waveforms in space without expensive equipment. However, there are times when the measurement wavelength does not exactly match the actual wavelength value, and the pressure waveform differs from the actual shape. This study was conducted to identify and analyze the causes of such errors occurring in SWPM. As a result, it was found that wavelength errors occur when the propagation direction of sound waves and the measurement direction of SWPM do not coincide. It has also been found that an error in the pressure waveform is generated when the induction and sound wave signal outputs from the SWPM interfere with each other to produce a composite signal. We have shown that we can develop educational experimental equipment by suggesting ways to reduce such errors.

The Characteristics of Transient Response According to Lasing Wavelengths and Propagation Directions in Double-Pass Gain-Clamped L-band EDFA with Linear Cavity (이중경로증폭 선형공진 고정이득 L-band EDFA에서 발진 파장 및 방향에 따른 과도응답 특성)

  • Kim Ik-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.547-555
    • /
    • 2006
  • We implemented DPU(Double-Pass Gain-Clamped) L-band EDFA for highly efficient amplification. A lasing signal generated within the linear cavity, can minimize the fluctuation of surviving channels when several WDM(Wavelength Division Multiplexing) channels are added or dropped. The new method measuring the characteristics of transient response of surviving channels quantitatively is suggested. It is to measure the ratio of lasing output before add or drop to that after add or drop. We investigated dynamic characteristics by using this method according to lasing wavelengths and propagation directions within the cavity. Experimental measurements show that the short lasing wavelength and backward propagation direction is the best condition for small fluctuation of surviving channels.

Characteristics of Transient Response According to Lasing Wavelengths and Propagation Directions in Double-Pass Gain-Clamped L-band EDFA with Linear Cavity (선형공진 이중경로증폭 고정이득 L-band EDFA에서 발진 파장 및 방향에 따른 과도응답 특성)

  • Kim, Ik-Sang
    • The Journal of Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.5-16
    • /
    • 2005
  • We implemented DPGC(Double-Pass Gain-Clamped) L-band EDFA for highly efficient amplification. A lasing signal generated within the linear cavity, can minimize the fluctuation of surviving channels when several WDM(Wavelength Division Multiplexing) channels are added or dropped. The new method describing the characteristics of transient response of surviving channels quantitatively is suggested. It is to measure the ratio of lasing output before add or drop to that after add or drop. We investigated dynamic characteristics by using this method according to lasing wavelengths and propagation directions within the cavity. The experimental measurements show that the short lasing wavelength and backward propagation direction is the best condition for small fluctuation of surviving channels.

  • PDF

Near-Infrared Spectral Characteristics in Presence of Sun Glint Using CASI-1500 Data in Shallow Waters

  • Jeon, Joo-Young;Kim, Sun-Hwa;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.281-291
    • /
    • 2015
  • Sun glint correction methods of hyperspectral data that have been developed so far have not considered the various situations and are often adequate for only certain conditions. Also there is an inaccurate assumption that the signal in NIR wavelength is zero. Therefore, this study attempts to analyze the NIR spectral properties of sun glint effect in coastal waters. For the analysis, CASI-1500 airborne hyperspectral data, bathymetry data and in-situ data obtained at coastal area near Sin-Cheon, Jeju Island, South Korea were used. The spectral characteristics of radiance and reflectance at the five NIR wavelengths (744 nm, 758 nm, 772 nm, 786 nm, and 801 nm) are analyzed by using various statistics, spatial and spectral variation of sun-glinted area under conditions of the bottom types of benthos, barren rocks and sand with similar water depth. Through the quantitative analysis, we found that the relation of water depth or bottom type with sun glint is relatively less which is a similar result with the previous studies. However the sun glint are distributed similarly with the patterns of the direction of wave propagation. It is confirmed that the areas with changed direction of wave propagation were not affected by the sun glint. The spatial and spectral variations of radiance and reflectance are mainly caused by the effect of sun glint and waves. The radiance or reflectance of more sun-glinted areas are increased approximately 1.5 times and the standard deviations are also increased three times compared to the less sun glinted areas. Through this study, the further studies of sun glint correction method in coastal water using the patterns of wave propagation and diffraction will be placed.