• Title/Summary/Keyword: Signal Factor

Search Result 1,835, Processing Time 0.029 seconds

Station Based Detection Algorithm using an Adaptive Fading Kalman Filter for Ramp Type GNSS Spoofing (적응 페이딩 칼만 필터를 이용한 기준국 기반의 램프 형태 GNSS 기만신호 검출 알고리즘)

  • Kim, Sun Young;Kang, Chang Ho;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.283-289
    • /
    • 2015
  • In this paper, a GNSS interference detection algorithm based on an adaptive fading Kalman filter is proposed to detect a spoofing signal which is one of the threatening GNSS intentional interferences. To detect and mitigate the spoofing signal, the fading factor of the filter is used as a detection parameter. For simulation, the effect of the spoofing signal is modeled by the ramp type bias error of the pseudorange to emulate a smart spoofer and the change of the fading factor value according to ramp type bias error is quantitatively analyzed. In addition, the detection threshold is established to detect the spoofing signal by analyzing the change of the error covariance and the effect of spoofing is mitigated by controlling the Kalman gain of the filter. To verify the performance analysis of the proposed algorithm, various simulations are implemented. Through the results of simulations, we confirmed that the proposed algorithm works well.

PelB Signal Sequence로 유도된 재조합 인간 상피세포 증식인자 분비 발현 벡터의 제조

  • Park, Se-Cheol;Nam, Jung-Hyun;Kim, Jeong-Keun;Kwon, Tae-Jong;Ko, In-Young;You, Kwang-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.5
    • /
    • pp.553-559
    • /
    • 1996
  • We have designed nucleotide sequences of hEGF structural gene to eliminate the N-terminal methionine residue incorporated during the translation initiation step, and constructed recombinant human epidermal growth factor (rhEGF) secretion plasmids pYHB101, and pYHB2 in which pelB signal sequence-hEGF gene was expressed under the control of the T7, and tac promoter, respectively. We also constructed pYHB1 vector which contains rhEGF gene controlled by T7 promoter. The transformant with pYHB101 showed relatively slow growth pattern compared to the transformant with pYHB1. However, we observed that the transformant with pYHB101 secreted rhEGF of 13 mg/l significantly after 5 hr induction with 1 mM IPTG and that the T7 promoter was more effective than tac promoter when connected to pelB signal sequence. The amount of rhEGF was 14 mg/l under the sub-optimized condition.

  • PDF

TACAN modulation generator for antenna purpose that precisely adjusts factor of modulation (변조도를 정밀하게 조정 하는 TACAN 안테나용 변조신호발생기)

  • Kim, Jong-Won;Son, Kyong-Sik;Lim, Jae-Hyun
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.275-284
    • /
    • 2017
  • TACAN(TACtical Air Navigation) was created to support military aircraft's short range navigation (200~300 mile). TACAN must fulfill a condition of MIL-STD-291C, the U.S. Military Standards, which addresses the sum of 15Hz and 135Hz should be within 55%, following the factor of modulations for both to be $21{\pm}9%$ each. Within the existing TACAN antenna, modulation factor for 15Hz and 135Hz are created differently depending on its diameter, wavelength, angle of gradient, internal modulation method or using frequency code. It brings up a problem where applications needed to be stopped and repaired when modulating signal exceeds the standard of MIL-STD-291C since the existing TACAN antenna does not have coordination function. Hence, plan and produce a modulating signal generator using FPGA, and check the changes in the modulation factor for 15HZ and 135Hz, depending on the values that have been set in each criteria. Moreover, allow the modulating signal generator to be automatically adjusted based on the monitoring signal emitted by antenna, and place alarm sound just in case if it exceeds the standard.

Spatiotemporal Location Fingerprint Generation Using Extended Signal Propagation Model

  • Kim, Hee-Sung;Li, Binghao;Choi, Wan-Sik;Sung, Sang-Kyung;Lee, Hyung-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.789-796
    • /
    • 2012
  • Fingerprinting is a widely used positioning technology for received signal strength (RSS) based wireless local area network (WLAN) positioning system. Though spatial RSS variation is the key factor of the positioning technology, temporal RSS variation needs to be considered for more accuracy. To deal with the spatial and temporal RSS characteristics within a unified framework, this paper proposes an extended signal propagation mode (ESPM) and a fingerprint generation method. The proposed spatiotemporal fingerprint generation method consists of two algorithms running in parallel; Kalman filtering at several measurement-sampling locations and Kriging to generate location fingerprints at dense reference locations. The two different algorithms are connected by the extended signal propagation model which describes the spatial and temporal measurement characteristics in one frame. An experiment demonstrates that the proposed method provides an improved positioning accuracy.

Small-Signal Modeling and Controller Design of Grid-Connected Inverter for Solid State Transformer (반도체 변압기용 단상 계통 연계형 인버터의 소신호 모델링과 제어기 설계)

  • Kim, Bo-Gyeong;Lee, Jun-Young;Lee, Soon-Sinl;Jung, Jee-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • In this paper, a small signal model for grid-connected inverter with unipolar pulse width modulation method is presented. Small-signal analysis allows to predict the stability and dynamics of the inverter. To regulate output voltage and to achieve power factor correction, inverter has two control loops. Loop gains are useful to identify the stability for multi-loop controlled system. Based on small-signal model, controllers are designed to improve audio susceptibility and output impedance characteristics. Proposed small-signal model and controllers are verified by PSIM simulation and experiments.

Modification of acceleration signal to improve classification performance of valve defects in a linear compressor

  • Kim, Yeon-Woo;Jeong, Wei-Bong
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.71-79
    • /
    • 2019
  • In general, it may be advantageous to measure the pressure pulsation near a valve to detect a valve defect in a linear compressor. However, the acceleration signals are more advantageous for rapid classification in a mass-production line. This paper deals with the performance improvement of fault classification using only the compressor-shell acceleration signal based on the relation between the refrigerant pressure pulsation and the shell acceleration of the compressor. A transfer function was estimated experimentally to take into account the signal noise ratio between the pressure pulsation of the refrigerant in the suction pipe and the shell acceleration. The shell acceleration signal of the compressor was modified using this transfer function to improve the defect classification performance. The defect classification of the modified signal was evaluated in the acceleration signal in the frequency domain using Fisher's discriminant ratio (FDR). The defect classification method was validated by experimental data. By using the method presented, the classification of valve defects can be performed rapidly and efficiently during mass production.

Time Shifted Pilot Signal Transmission With Pilot Hopping To Improve The Uplink Performance of Massive MIMO System For Next Generation Network

  • Ruperee, Amrita;Nema, Shikha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4390-4407
    • /
    • 2019
  • The paucity of pilot signals in Massive MIMO system is a vital issue. To accommodate substantial number of users, pilot signals are reused. This leads to interference, resulting in pilot contamination and degrades channel estimation at the Base Station (BS). Hence, mitigation of pilot contamination is exigency in Massive MIMO system. The proposed Time Shifted Pilot Signal Transmission with Pilot signal Hopping (TSPTPH), addresses the pilot contamination issue by transmitting pilot signals in non-overlapping time interval with hopping of pilot signals in each transmission slot. Hopping is carried by switching user to new a pilot signal in each transmission slot, resulting in random change of interfering users. This contributes to the change in channel coefficient, which leads to improved channel estimation at the BS and therefore enhances the efficiency of Massive MIMO system. In this system, Uplink Signal Power to Interference plus Noise Power Ratio (SINR) and data-rate are calculated for pilot signal reuse factor 1 and 3, by estimating the channel with Least Square estimation. The proposed system also reduces the uplink Signal power for data transmission of each User Equipment for normalized spectral efficiency with rising number of antennas at the BS and thus improves battery life.

ASF Measurements on Maritime by the Signal of the Pohang Loran-C (9930M) (포항 로란-C (9930M) 신호를 이용한 ASF 해상측정)

  • Lee, Chang-Bok;Lee, Jong-Koo;Kim, Young-Jae;Hwang, Sang-Wook;Lee, Sang-Jeong;Yang, Sung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.35 no.8
    • /
    • pp.619-624
    • /
    • 2011
  • A significant factor limiting the ranging accuracy of Loran (Long Range Navigation) signal is the additional secondary factor (ASF) in the time of arrival (TOA) measurements. Precise ASF values are essential if Loran deliver the high absolute accuracies demanded for aircraft approach, maritime harbour entrance. We measured the absolute propagation delay between Pohang Loran signal and Loran receiver output signal by comparing with Cesium atomic clock. In this study we measured ASFs between Pohang 9930M station and the 12 measurement points in the Yeongil Bay by using the measurement technique of absolute time delay. The measurement points were spaced at interval of 3 km by 3 km. An E-field antenna and an H-field antenna were used to improve the accuracy of ASF measurements and a DGPS (Differential GPS) receiver was used for accurate positions. We have gotten the result that the measured ASFs were compared with the predicted ASFs through this measurement technique.

A Novel Design of CDSK Receiver for Improving the BER Performance (BER 성능 향상을 위해 제안하는 새로운 CDSK 수신기)

  • Lee, Jun-Hyun;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.638-643
    • /
    • 2013
  • Chaos communication system has a sensitive characteristic to initial conditions, because completely another signal is generated when initial condition of chaos equation is changed subtly. Also, chaos communication systems have the characteristics of non-periodic, non-predictability, the broadband signal, such as ease of implementation. Due to these characteristics, security of chaos communication system generally is evaluated better than other systems. However, BER(Bit Error Rate) performance is evaluated worse than other digital system, because existing chaos communication system's transmitter and receiver are strong influence by interference signal and noise. So, research to improve the BER performance of the chaotic communication system is performed continuously. In this paper, We will propose a new CDSK(Correlation Delay Shift Keying) receiver for BER performance improvement. After we compare to the performance of existing CDSK receiver and proposed CDSK receiver, BER performance of proposed CDSK receiver evaluate. Also, when using the new CDSK receiver, we evaluate the BER performance according to the spreading factors and find an optimum spreading factor. If chaos communication system use a new CDSK receiver, BER performance is improved than existing CDSK receiver. Also, if spreading factor's value is increased, BER performance is improved, because it is not nearly affected by interference signal and noise.

A Development of Wrist type Monitoring System for Smart Home Healthcare (스마트홈의 헬스케어를 위한 손목형 생체신호 감시 장치 개발)

  • Lee, Gun-Ki;Lee, Ju-Won;Jeong, Won-Geun;Lee, Han-Wook;Jang, Jun-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2349-2354
    • /
    • 2006
  • Due to technological developments and the joint effect of both new social and economic needs and constraints, telemedicine is expanding rapidly through a variety of applications. Especially, owing to the rapid aging of society and increasing the wish for well being life, we take interest in health care services for people with special needs who wish to remain independent and living in their own home. We have focused on tole-monitoring to real-time medical signal and environment factor which is an influence on medical signal. We monitor the six signal(medical signal and environment factor), and transmit that signal to computer on bluetooth network. We get the information after using the some digital signal processing system, and display that information on the real-time monitoring system. We developed the measurer as portable type in older to non-restrained monitor.