• Title/Summary/Keyword: Signal Evaluation

Search Result 1,915, Processing Time 0.031 seconds

Developing a Prototype of Motion-sensing Smart Leggings (동작센싱 스마트레깅스 프로토타입 개발)

  • Jin-Hee Hwang;Seunghyun Jee;Sun Hee Kim
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.694-706
    • /
    • 2022
  • This study focusses on the development of a motion-sensing smart leggings prototype with the help of a module that monitors motion using a fiber-type stretch sensor. Additionally, it acquires data on Electrocardiogram (ECG), respiration, and body temperature signals, for the development of smart clothing used in online exercise coaching and customized healthcare systems. The research process was conducted in the following order: 1) Fabrication of a fiber-type elastic strain sensor for motion monitoring, 2) Positioning and attaching the sensor, 3) Pattern development and three-dimensional (3D) design, 4) Prototyping 5) Wearability test, and 6) Expert evaluation. The 3D design method was used to develop an aesthetic design, and for sensing accurate signal acquisition functions, wearability tests, and expert evaluation. As a result, first, the selection or manufacturing of an appropriate sensor for the function is of utmost importance. Second, the selection and attachment method of a location that can maximize the function of the sensor without interfering with any activity should be studied. Third, the signal line selection and connection method should be considered, and fourth, the aesthetic design should be reflected along with functional verification. In addition, the selection of an appropriate material is important, and tests for washability and durability must be made. This study presented a manufacturing method to improve the functionality and design of smart clothing, through the process of developing a prototype of motion-sensing smart leggings.

Evaluation of Signal Stability of Fiber Optic Sensors with respect to Sensor Packaging Methods in Long-Term Monitoring (장기 모니터링 환경에서 센서 패키징 방법에 따른 광섬유 센서의 신호 안정성 평가)

  • Kang, Donghoon;Kim, Heon-Young;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • Fiber Bragg grating (FBG) sensors are applied in structural health monitoring (SHM) in various application fields because of their ease of multiplexing and capability of performing absolute measurements. Moreover, the packaging methods of FBG sensors accelerate their commercialization rapidly. However, long-term SHM exposes the FBG sensors to cyclic thermal loads, and a investigation is required because it finally leads to the signal instability of the FBG sensors. In this study, the effects of sensor packaging methods two methods are generally used for the FBGs: (bonding both sides of the FBG or bonding the FBG directly on signal stability of FBG sensors are investigated. Tests are conducted on specimens in a thermal chamber, over a temperature range from $-20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. Signal characteristics such as Bragg wavelength, light intensity and full width at half maximum are examined and are compared with those of the FBG sensors, obtained in a previous study under direct bonding conditions. From the comparison, it is observed that the FBG sensors with bonding on both sides of the FBG demonstrate higher signal stabilities when exposed to cyclic thermal loads during long-term SHM. Consequently, it guarantees more effectiveness when packaging the FBG sensors.

Performance Evaluation of SE-MMA Adaptive Equalization Algorithm with Varying Step Size based on Error Signal's Nonlinear Transform (오차 신호의 비선형 변환을 이용한 Varying Step Size 방식의 SE-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.77-82
    • /
    • 2017
  • This paper related with the VSS_SE-MMA (Varying Step Size_Signed Error-MMA) which possible to improving the equalization performance that employing the varying adaptive step size based on the nonlinearities of error signal of SE-MMA (Signed Error-MMA), compensates the intersymbol interference by distortion occurs at the communication channel, in the transmitting the spectral efficient nonconstant modulus signal such as 16-QAM. The SE-MMA appeared to the reducing the computational arithematic operation using the polarity of error signal in the updating the tap coefficient of present MMA adaptive equalizer, but have a problem of equalization performance degradation. The VSS_SE-MMA improves the problem of such SE-MMA, using the varying step size consider the error signal in the update the adaptive equalizer tap coefficient, and its improved performance were confirmed by simulation. For this, the output signal constellation of equalizer, the residual isi and maximum distortion, MSE and SER were applied. As a result of computer simulation, it was confirmed that the VSS_SE-MMA algorithm has nearly same in convergence speed and has more good performance in every performance index at the steady state.

Development and Evaluation of a Left-Turn Actuated Traffic Signal Control Strategy using Image Detectors (영상검지기를 이용한 좌회전 감응식 신호제어전략 개발)

  • Eun, Ji-Hye;O, Yeong-Tae;Yun, Il-Su;Lee, Cheol-Gi;Kim, Nam-Seon;Han, Ung-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.111-121
    • /
    • 2011
  • This paper discusses a method for optimizing the semi-actuated traffic signal control system by adjusting the initial interval according to the number of vehicles waiting for the green light in the actuated phase. We also present a Left-Turn actuated traffic signal control strategy that examines the vehicular noise in the detection area and determines the phase extension and the gap-out. In order to detect the vehicles in real-time, an image detector's Video Image Tracking technology was adopted. A 'Zone in Zone'method was implemented, and the image detection area is segmented into three zones: 1) Zone1 for verifying a vehicles obligatory presence, 2) Zone2 for counting the standby vehicles, and 3) Zone3 for examining the number of vehicles that have passed. The on-site assessment of the Left Turn Actuated Control is carried out using CORSIM, and the results show that the Control Delay decreased by 23.10%, 15.06%, and 4.34% compared to the delays resulted from pre-timed control, semi-actuated control-1 and semi-actuated control-2 traffic signal control systems respectively. The Queue Time also decreased by 36.24%, 20.10% and the Total Time by 14.36%, 7.02% for the same scenario. Which clearly demonstrates the operational efficiency. A sensitivity analysis reveals that the improvement from the propose traffic control strategy tends to increase as the through traffic volume reaches a saturated condition and the left-turn traffic volume decreases.

The Effect of Grid Ratio and Material of Anti-scatter Grid on the Scatter-to-primary Ratio and the Signal-to-noise Ratio Improvement Factor in Container Scanner X-ray Imaging

  • Lee, Jeonghee;Lim, Chang Hwy;Park, Jong-Won;Kim, Ik-Hyun;Moon, Myung Kook;Lim, Yong-Kon
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.197-204
    • /
    • 2017
  • Background: X-ray imaging detectors for the nondestructive cargo container inspection using MeV-energy X-rays should accurately portray the internal structure of the irradiated container. Internal and external factors can cause noise, affecting image quality, and scattered radiation is the greatest source of noise. To obtain a high-performance transmission image, the influence of scattered radiation must be minimized, and this can be accomplished through several methods. The scatter rejection method using an anti-scatter grid is the preferred method to reduce the impact of scattered radiation. In this paper, we present an evaluation the characteristics of the signal and noise according to physical and material changes in the anti-scatter grid of the imaging detector used in cargo container scanners. Materials and Methods: We evaluated the characteristics of the signal and noise according to changes in the grid ratio and the material of the anti-scatter grid in an X-ray image detector using MCNP6. The grid was composed of iron, lead, or tungsten, and the grid ratio was set to 2.5, 12.5, 25, or 37.5. X-ray spectrum sources for simulation were generated by 6- and 9-MeV electron impacts on the tungsten target using MCNP6. The object in the simulation was designed using metallic material of various thicknesses inside the steel container. Using the results of the computational simulation, we calculated the change in the scatter-to-primary ratio and the signal-to-noise ratio improvement factor according to the grid ratio and the grid material, respectively. Results and Discussion: Changing the grid ratios of the anti-scatter grid and the grid material decreased the scatter linearly, affecting the signal-to-noise ratio. Conclusion: The grid ratio and material of the anti-scatter grid affected the response characteristics of a container scanner using high-energy X-rays, but to a minimal extent; thus, it may not be practically effective to incorporate anti-scatter grids into container scanners.

Estimation of Displacement Response from the Measured Dynamic Strain Signals Using Mode Decomposition Technique (모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정)

  • Chang, Sung-Jin;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.507-515
    • /
    • 2008
  • In this study, a method predicting the displacement response of structures from the measured dynamic strain signal is proposed by using mode decomposition technique. Evaluation of bridge stability is normally focused on the bridge completed. However, dynamic loadings including wind and seismic loadings could be exerted to the bridge under construction. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. As previous studies on the prediction of displacement response by using the FBG sensors, the static displacement has been mainly predicted. For predicting the dynamic displacement, it has been known that the measured strain signal includes higher modes and then the predicted dynamic displacement can be inherently contaminated by broad-band noises. To overcome such problem, a mode decomposition technique was used. Mode decomposition technique estimates the displacement response of each mode with mode shape estimated to use POD from strain signal and with the measured strain signal decomposed into mode by EMD. This is a method estimating the total displacement response combined with the each displacement response about the major mode of the structure. In order to examine the mode decomposition technique suggested in this study model experiment was performed.

Assessment of Magnetic Resonance Image Quality For Ferromagnetic Artifact Generation: Comparison with 1.5T and 3.0T. (강자성 인공물 발생에 대한 자기공명영상 질 평가: 1.5T와 3.0T 비교)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.2
    • /
    • pp.193-199
    • /
    • 2018
  • In this research, 15 patients were diagnosed with 1.5T and 3.0T MRI instruments (Philips, Medical System, Achieva) to minize Ferromagnetic artifact and find the optimized Tesla. Based on the theory that the 3.0T, when compared to 1.5T, show relatively high signal-to-ratio(SNR), Scan time can be shortened or adjust the image resolution. However, when using the 3.0T MRI instruments, various artifact due to the magnetic field difference can degrade the diagnostic information. For the analysis condition, area of interest is set at the background of the T1, T2 sagittal image followed by evaluation of L3, L4, L5 SNR, length of 3 parts with Ferromagnetic artifact, and Histogram. The validity evaluation was performed by using the independent t test. As a result, for the SNR evaluation, mere difference in value was observed for L3 between 1.5T and 3.0T, while big differences were observed for both L4, and L5(p<0.05). Shorter length was observed for the 1.5T when observing 3 parts with Ferromagnetic artifact, thus we can conclude that 3.0T can provide more information on about peripheral tissue diagnostic information(p<0.05). Finally, 1.5T showed higher counts values for the Histogram evaluation(p<0.05). As a result, when we have compared the 1.5T and 3.0T with SNR, length of Ferromagnetic artifact, Histogram, we believe that using a Low Tesla for Spine MRI test can achieve the optimal image information for patients with disk operation like PLIF, etc. in the past.

A Study on Wearable Emotion Monitoring System Under Natural Conditions Applying Noncontact Type Inductive Sensor (자연 상태에서의 인간감성 평가를 위한 비접촉식 인덕티브 센싱 기반의 착용형 센서 연구)

  • Hyun-Seung Cho;Jin-Hee Yang;Sang-Yeob Lee;Jeong-Whan Lee;Joo-Hyeon Lee;Hoon Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.3
    • /
    • pp.149-160
    • /
    • 2023
  • This study develops a time-varying system-based noncontact fabric sensor that can measure cerebral blood-flow signals to explore the possibility of brain blood-signal detection and emotional evaluation. The textile sensor was implemented as a coil-type sensor by combining 30 silver threads of 40 deniers and then embroidering it with the computer machine. For the cerebral blood-flow measurement experiment, subjects were asked to attach a coil-type sensor to the carotid artery area, wear an electrocardiogram (ECG) electrode and a respiration (RSP) measurement belt. In addition, Doppler ultrasonography was performed using an ultrasonic diagnostic device to measure the speed of blood flow. The subject was asked to wear Meta Quest 2, measure the blood-flow change signal when viewing the manipulated image visual stimulus, and fill out an emotional-evaluation questionnaire. The measurement results show that the textile-sensor-measured signal also changes with a change in the blood-flow rate signal measured using the Doppler ultrasonography. These findings verify that the cerebral blood-flow signal can be measured using a coil-type textile sensor. In addition, the HRV extracted from ECG and PLL signals (textile sensor signals) are calculated and compared for emotional evaluation. The comparison results show that for the change in the ratio because of the activation of the sympathetic and parasympathetic nervous systems due to visual stimulation, the values calculated using the textile sensor and ECG signals tend to be similar. In conclusion, a the proposed time-varying system-based coil-type textile sensor can be used to study changes in the cerebral blood flow and monitor emotions.

A Study on Auditory Perception Characteristics of Directional Tonal Noise (방향성을 가진 회전체 소음의 청각계 인지 특성에 관한 연구)

  • Seo, Kang-Won;Kim, Eui-Youl;Kim, Sung-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.348-353
    • /
    • 2012
  • This paper presents the HRTF based experimental approach to figure out why the human auditory perception on the interior noise source including the directional tonal components does not well match with the dominant features extracted from recorded acoustic signals in terms of psycho-acoustics. Since the general objective evaluation models for tonalness among various sound attributes are a function of width, frequency, excessive level of tonal components respectively, the directional tonal components cannot be properly evaluated without considering the effects of head-related transfer function on the binaural auditory perception. Thus, the directivity of source is additionally considered to prevent the erroneous conclusions from the same sound source in the process of source identification. The signal synthesis technique is used to solve a little difficulty in measuring all of desired acoustic signals for jury evaluation. The sound attributes of synthetic acoustics signals are analyzed to roughly predict the results of jury evaluation in advance by using sound quality factors such as loudness, sharpness, roughness, fluctuation strength and tonality. The jury evaluation is carefully conducted based on the recommended guideline suggested by N. Ottoet al. Each sound is respectively evaluated by selecting a value between -2 and 2 in intervals of 0.2 point. Through above procedure, based on the results of jury evaluation, it is confirmed that serious problems can be caused in the process of analyzing the dominant sound attributes in terms of psycho-acoustics according to the type of a microphone and a playback system.

  • PDF

A Study on the Evaluation of Vehicle Operation Prior to Autonomous Vehicle Technology Deployment in Urban Area (도심지역 자율주행 자동차기술 적용을 위한 차량운행에 관한 연구)

  • Chang, Kyung-Jin;Yoo, Song-Min
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.452-459
    • /
    • 2019
  • In order for an autonomous vehicle to be commercialized, it is necessary to conduct a safety test for every aspect. Considering the implementation of the autonomous vehicles technologies to the highest level, it is necessary to analyze the possible scenarios in the most complex environment as in the urban area. It should be confirmed whether autonomous vehicles can be operated with conventional traffic signal environment. It is also required to confirm the ability of autonomous vehicles in interacting with other vehicles, and coping with possible accidents on the road. In this study, the evaluation factors of autonomous vehicles in the road environment are selected by referring to the other evaluation protocols like ADAS. Study result would be reflected in establishing the autonomous vehicle evaluation method for different test environment along with various technology implementation level.