• Title/Summary/Keyword: Signal Evaluation

Search Result 1,915, Processing Time 0.024 seconds

Clinical Utility of Turbo Contrase-Enhanced MR Angiography for the Major Branches of the Aortic Arch (대동맥궁 주요 분지들의 고속 조영증강 자기공명혈관조영술의 임상적 유용성)

  • Su Ok Seong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.96-103
    • /
    • 1998
  • Purpose : To assess the clinical utility of turbo contrast-enhanced magnetic resonance angiography(CE MRA) in the evaluation of the aortic arch and its major branches and to compare the image quality of CE MRA among different coils used. Materials and Methods : Turbo three-phase dynamic CE MRA encompassing aortic arch and its major branches was prospectively performed after manual bolus IV injection of contrast material in 29 patients with suspected cerebrovascular diseases at 1.0T MR unit. the raw data were obtained with 3-D FISH sequence (TR 5.4ms, TE 2.3ms, flip angle 30, slab thickness 80nm, effective slice thickness 4.0mm, matrix size $100{\times}256$, FOV 280mm). Total data acquisition time was 4. to 60 seconds. We subjectively evaluated the imge quality with three-rating scheme : "good" for unequivocal normal finding, "fair" for relatively satisfactory quality to diagnose 'normal' despite intravascular low signal, and "poor" for equivocal diagnosis or non-visualization of the origin or segment of the vessels due to low signal or artifacts which needs catheter angiography. At the level of the carotid bifurcation, it was compared with conventional 2D-TOF MRA image. Overall image quality was also compared visually and quantitatively by measuring signal-to-noise ratios (SNRs) of the ascending aorta, the innominate artery and both common carotid arteries among the three different coils used(CP body array(n=12), CP neck array(n=9), and head-and-neck(n=8). Results : Demonstration of the aortic arch and its major branches was rated as "good" in 55% (16/29) and "fair" in 34%(10/29). At the level of the carotid bifurcation, image quality of turbo CE MRA was same as or better than conventional 2D-TOF MRA in 65% (17/26). Overall image quality and SNR were significantlygreater with CP body array coil than with CP neck array or head-and-neck coil. Conclusions : Turbo CE MRA can be used as a screening exam in the evaluation of the major branches of the aortic arch from their origin to the skull base. Overall imagequality appears to be better with CP body array coil than with CP neck array coil or head-and-neck coil.

  • PDF

Detection of Spoilage Odors in Beef Using R-index and Pseudomonas Growth during Storage (쇠고기의 저장 중 R-index에 의한 부패취 발생시점과 Pseudomonas의 증식과의 비교 분석)

  • Byeon, Ko Eun;Park, Han Jo;An, Soo Rim;Hong, Kwang Won;Min, Sang Gi;Chung, Ku Young;Won, Kee Hoon;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.117-121
    • /
    • 2009
  • Detection of spoilage odors from beef during storage was investigated using sensory evaluation with R-index, and microbial assay for Pseudomonas. Beef samples were tested to measure the flavor changes, which were converted to R-index, and the Pseudomonas levels during storage. There was a steep rise in R-index until 36 hr after storage at 25$^{\circ}C$, and then a gentle rise from 48 hr, whereas, there was a steady rise in R-index in the whole range of storage at 5$^{\circ}C$. Detection time of spoilage odors according to R-index was statistically analyzed at $\alpha$=5% to be at 30.92${\pm}$3.47 hr and 169.80${\pm}$11.27 hr for 25 and 5$^{\circ}C$ storage, respectively, and analyzed at $\alpha$=1% to be 34.80${\pm}$4.01 and 176.41${\pm}$9.89 hr for 25 and 5$^{\circ}C$ storage, respectively. At the detection times of spoilage odors, the Pseudomonas levels were found to be almost the same, but less than 6-7 log CFU/g generally known as a standard level at occurrence of spoilage odors in beef. This indicated that some other factors than the Pseudomonas reactions could be associated with generation of spoilage odors.

An Objective Estimation for Simulating of Asymmetrical Auditory Filter of the Hearing Impaired According to Hearing Loss Degree (난청인의 난청 정도에 따른 비대칭 청각 필터 구현의 객관적 평가)

  • Joo, S.I.;Jeon, Y.Y.;Song, Y.R.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.3 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • Hearing impaired person's hearing loss has personally various shape, so existing symmetrical auditory filter of frequency band method wasn't properly simulated the hearing impaired person's various hearing loss shape. The shapes of auditory filter are asymmetrical different with each center frequency and each input level. Hearing impaired person which has hearing loss was differently changed with that of normal hearing people and it has different value for speech of quality through auditory filter. In this study, the asymmetrical auditory filter was simulated and then some tests to estimate the filter's performance objectively were performed. The experiment as simulated auditory filter's performance evaluation method used perceptual evaluation of speech quality (PESQ) and log likelihood ratio (LLR) for speech through auditory filter. In the test, processed speech was evaluated objective speech quality and distortion using PESQ and LLR value. When hearing loss processed, PESQ and LLR value have big difference between symmetrical and asymmetrical auditory filter. It means that the difference of the shape auditory filter may affect to speech quality. Especially, when hearing loss existed, auditory filter changing according to asymmetrical shape for each center frequency affected to perceive speech quality of the hearing impaired.

  • PDF

Evaluation of Mobility and Safety of Operating an Overlap Phase on a Shared-Left-Turn Lane Using a Microscopic Traffic Simulation Model (미시교통시뮬레이션모형을 이용한 공용 좌회전 차로의 중첩현시운영의 이동성과 안전성 평가 연구)

  • Yun, Il-Soo;Han, Eum;Woo, Seok-Cheol;Yoon, Jung-Eun;Park, Sung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.15-26
    • /
    • 2012
  • Government agencies including the national police agency have executed diverse efforts including continuous improvements of traffic facilities and operation methods, education, enforcements in order to improve traffic operation systems; nevertheless there have been continuous criticisms on irrationality in traffic signal and road facility operation. One of the reasons may be the lack of systematic preliminary evaluations on various alternatives. However, there was no appropriate tool to evaluate the mobility and safety of thus alternatives in a systematic way. Therefore, this study proposes the systematic use of microscopic traffic simulation models as a comprehensive evaluation tool. In addition, this study verified the potential of using a microscopic traffic simulation model using the case of operating an overlap phase on a shared-left-turn lane through a systematic way where the evaluation was conducted through data collection, building networks, calibrating microscopic simulation models, producing performance measures, evaluating mobility and safety, and so on. As a result, the operation of overlap phase on a shared-left-turn lane showed no big difference from other operation scenarios such as leading left-turn on exclusive left turn lane in terms of mobility. However the operation of overlap phase on a shared-left-turn lane decreased safety by increasing potential conflicts.

Convergence Performance Evaluation of Radiation Protection for Apron using the PSNR (최대 신호 대 잡음비를 이용한 방사선 방어용 앞치마의 융복합 성능평가)

  • Kim, Dae-Ho;Kim, Sang-Hyun
    • Journal of Digital Convergence
    • /
    • v.13 no.10
    • /
    • pp.377-383
    • /
    • 2015
  • This study evaluates the convergence radiation protection performance by measuring the PSNR(peak signal-to-noise ratio) values of the image J in the image evaluation program based on increased relative to this exposure of radiation workers.The aim of this study was to evaluate radiation protection performance of apron for design of it's basic information. Method was used to PSNR of Image J program and good condition apron was more than 27dB, the PSNR value of poor condition apron appeared to be less than 24dB. The result is the normality were satisfied distribution and T-test values were statistically significant with p<0.001. Results of evaluation of the performance protective apron through the more easily accessible experimental conditions and methods in the clinical was confirmed distinctly different. in order to reduce the radiation exposure we need to evaluate convergence protection performance and to be having a good performance apron.

Three-Dimensional Processing of Ultrasonic Pulse-Echo Signal (초음파 펄스에코 신호의 3차원 처리)

  • Song, Moon-Ho;Song, Sang-Rock;Cho, Jung-Ho;Sung, Je-Joong;Ahn, Hyung-Keun;Jang, Soon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.464-474
    • /
    • 2003
  • Ultrasonic imaging of 3-D structures for nondestructive evaluation must provide readily recognizable images with enough details to clearly show various flaws that may or may not be present. Typical flaws that need to be detected are miniature cracks, for instance, in metal pipes having aged over years of operation in nuclear power plants; and these sub-millimeter cracks or flaws must be depicted in the final 3-D image for a meaningful evaluation. As a step towards improving conspicuity and thus detection of flaws, we propose a pulse-echo ultrasonic imaging technique to generate various 3-D views of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. We employ a 2-D Wiener filter that filters the pulse-echo data along the plane orthogonal to the beam propagation so that ultrasonic beams can be sharpened. This three-dimensional processing and display coupled with 3-D manipulation capabilities by which users are able to pan and rotate the 3-D structure improve conspicuity of flaws. Providing such manipulation operations allow a clear depiction of the size and the location of various flaws in 3-D.

Application of Acoustic Emission for Assessing Deterioration in Reinforced Concrete Beams (철근 콘크리트 빔의 노화도 평가를 위한 음향방출 기술의 응용)

  • Yoon, Dong-Jin;Park, Phi-Lip;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.276-284
    • /
    • 2000
  • The acoustic emission (AE) behavior of reinforced concrete beams tested under flexural loading was investigated to characterize and identify the source of damage. This research was aimed at identifying the characteristic AE response associated with micro-crack development, localized crack propagation, corrosion, and debonding of the reinforcing steel. Concrete beams were prepared to isolate the damage mechanisms by using plain, notched-plain, reinforced, and corroded-reinforced specimens. The beams were tested using four-point cyclic step-loading. The AE response was analyzed to obtain key parameters such as the time history of AE events, the total number and rate of AE events, and the characteristic features of the waveform. Initial analysis of the AE signal has shown that a clear difference in the AE response is observed depending on the source of the damage. The Felicity ratio exhibited a correlation with the overall damage level, while the number of AE events during unloading can be an effective criterion to estimate the level of corrosion distress in reinforced concrete structures. Consequently, AE measurement characterization appears to provide a promising approach for estimating the level of deterioration in reinforced concrete structure.

  • PDF

On the Correlation between Subjective Test and Loudness Measurement of the Loudspeaker (스피커의 주관적 청음 평가치와 라우드니스 측정치 간의 상관 관계)

  • Shin, Sung-Hwan;Ih, Jeong-Guon;Jeong, Hyuk;Yu, Dong-Gu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.7
    • /
    • pp.66-76
    • /
    • 2000
  • Acoustic performance of loudspeakers for sound reproduction has been qualitatively evaluated by using the listening test by juries in the development and final evaluation stages. However, the subjective evaluation method has many problems in the viewpoint of reliability and repeatability that are mainly related to the jury performance, as well as time and economy. In this reason, objective techniques should be tried to evaluate the acoustic performance of loudspeakers as well as the conventional subjective test. The object of this study is to find if there is any correlation between the statistically treated in test results and the measured results based on the loudness of reproduced sound signals. For the four-step statistical analysis, the analysis of variance (ANOVA) and Tukeys method are employed for dealing with the data from the listening test. For the objective evaluation, Zwickers loudness considering the human hearing characteristics is calculated for the measured sound signal emitted from each loudspeaker and the objective ratings such as fidelity rating (FR) and softness rating (SR) is suggested. The correlation between two ratings has been demonstrated for an actual set of loudspeakers using FR, SR and correlation coefficient. The method in this study can be useful in statistically evaluating commercial or prototype loudspeakers without using very time-consuming and expensive subjective testing.

  • PDF

Application of Laser Ultrasonic Technique for Nondestructive Evaluation of Wall Thinning in Pipe (배관부 감육 손상의 비파괴 평가를 위한 레이저 초음파 기술 적용)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu;Yoon, Suk-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.361-367
    • /
    • 2013
  • Many of the nuclear power plant pipe is used in high temperature and high pressure environment. Wall thinning frequently caused by the corrosion. These wall thinning in pipe is expected gradually increase as nuclear power become superannuated. Therefore there is need to evaluate wall thinning in pipe and corrosion defect by non-destructive method to prevent the accident of the nuclear power facility due to pipe corrosion. Especially for real-time assessment of the wall thinning that occurs in nuclear power plant pipe, the laser ultrasonic technology can be measured even in hard-to-reach areas, beyond the limits of earlier existing contact methods. In this study, the optical method using laser was applied for non-destructive and non-contact evaluation. Ultrasonic signals was acquired through generating ultrasonic by pulse laser and using laser interferometer. First the ultrasonic signal was detected in no wall thinning in pipe, then a longitudinal wave velocity was measured inside of pipe. Artificial wall thinning specimen compared to 20, 30, 40 and 50% of thickness of the pipe was produced and the longitudinal wave velocity was measured. It was possible to evaluate quantitatively the wall thinning area(internal defect depth) cause it was able to calculate the thickness of each specimen using measured longitudinal wave velocity.

Study on Application of Ultrasonic Propagation Imager for Non-destructive Evaluation of Composite Lattice Structure (복합재 격자 구조 비파괴평가를 위한 초음파전파 영상화 시스템 활용 연구)

  • Park, Jae-Yoon;Shin, Hye-Jin;Lee, Jung-Ryul
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.356-364
    • /
    • 2017
  • Composite lattice structures are tried to be used in various fields because of its benefit in physical properties. With increase of demand of the composite lattice structure, nondestructive testing technology is also required to certificate the quality of the manufactured structures. Recently, research on the development of the composite lattice structure in Republic of Korea was started and accordingly, fast and accurate non-destructive evaluation technology was needed to finalize the manufacturing process. This paper studied non-destructive testing methods for composite lattice structure using laser ultrasonic propagation imaging systems. Pulse-echo ultrasonic propagation imaging system was able to inspect a rib structure wrapped with a skin structure. To reduce the time of inspection, a band divider, which can get signal in different frequency bands at once, was developed. Its performance was proved in an aluminum sandwich panel. In addition, to increase a quality of results, curvature compensating algorithm was developed. On the other hand, guided wave ultrasonic propagation imaging system was applied to inspect delamination in a rib structure. To increase an area of inspection, multi-source ultrasonic wave propagation image was applied, and defects were successfully highlighted with variable time window amplitude mapping algorithm. These imply that ultrasonic propagation imaging systems provides fast and accurate non-destructive testing results for composite lattice structure in a stage of the manufacturing process.