• Title/Summary/Keyword: Sigmoid functionally graded material(S-FGM)

Search Result 19, Processing Time 0.021 seconds

Nonlocal elasticity effects on free vibration properties of sigmoid functionally graded material nano-scale plates (S형상 점진기능재료 나노-스케일 판의 자유진동 특성에 미치는 비국소 탄성 효과)

  • Kim, Woo-Jung;Lee, Won-Hong;Park, Weon-Tae;Han, Sung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1109-1117
    • /
    • 2014
  • We study free vibration analysis of sigmoid functionally graded materials(S-FGM) nano-scale plates, using a nonlocal elasticity theory of Eringen in this paper. This theory has ability to capture the both small scale effects and sigmoid function in terms of the volume fraction of the constituents for material properties through the plate thickness. Numerical solutions of S-FGM nano-scale plate are presented using this theory to illustrate the effect of nonlocal theory on natural frequency of the S-FGM nano-scale plates. The relations between nonlocal and local theories are discussed by numerical results. Further, effects of (i) power law index (ii) nonlocal parameters, (iii) elastic modulus ratio and (iv) thickness and aspect ratios on nondimensional frequencies are investigated. In order to validate the present solutions, the reference solutions are compared and discussed. The results of S-FGM nano-scale plates using the nonlocal theory may be the benchmark test for the free vibration analysis.

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory

  • Chikh, Abdelbaki;Bakora, Ahmed;Heireche, Houari;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.617-639
    • /
    • 2016
  • In this work, an analytical formulation based on both hyperbolic shear deformation theory and stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects of different parameters such as material and geometrical characteristics, temperature, boundary conditions, foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading capacity of the S-FGM plates are investigated.

Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory

  • Beldjelili, Youcef;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.755-786
    • /
    • 2016
  • The hygro-thermo-mechanical bending behavior of sigmoid functionally graded material (S-FGM) plate resting on variable two-parameter elastic foundations is discussed using a four-variable refined plate theory. The material characteristics are distributed within the thickness direction according to the two power law variation in terms of volume fractions of the constituents of the material. By employing a four variable refined plate model, both a trigonometric distribution of the transverse shear strains within the thickness and the zero traction boundary conditions on the top and bottom surfaces of the plate are respected without utilizing shear correction factors. The number of independent variables of the current formulation is four, as against five in other shear deformation models. The governing equations are deduced based on the four-variable refined plate theory incorporating the external load and hygro-thermal influences. The results of this work are compared with those of other shear deformation models. Various numerical examples introducing the influence of power-law index, plate aspect ratio, temperature difference, elastic foundation parameters, and side-to-thickness ratio on the static behavior of S-FGM plates are investigated.

Nonlocal vibration analysis of FG nano beams with different boundary conditions

  • Ehyaei, Javad;Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.85-111
    • /
    • 2016
  • In this paper, the classical and non-classical boundary conditions effect on free vibration characteristics of functionally graded (FG) size-dependent nanobeams are investigated by presenting a semi analytical differential transform method (DTM) for the first time. Three kinds of mathematical models, namely; power law (P-FGM), sigmoid (S-FGM) and Mori-Tanaka (MT-FGM) distribution are considered to describe the material properties in the thickness direction. The nonlocal Eringen theory takes into account the effect of small size, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. Governing equations are derived through Hamilton's principle and they are solved applying semi analytical differential transform method. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as small scale effects, spring constant factors, various material compositions and mode number on the normalized natural frequencies of the FG nanobeams in detail. It is explicitly shown that the vibration of FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Study on stability and free vibration behavior of porous FGM beams

  • Bennai, Riadh;Atmane, Redhwane Ait;Bernard, Fabrice;Nebab, Mokhtar;Mahmoudi, Noureddine;Atmane, Hassen Ait;Aldosari, Salem Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.67-82
    • /
    • 2022
  • In this paper, buckling and free vibration of imperfect, functionally graded beams, including porosities, are investigated, using a higher order shear strain theory. Due to defects during the manufacturing process, micro porosities may appear in the material, hence the appearance of this imperfection in the structure. The material properties of the beams are assumed to vary regularly, with power and sigmoid law, in the direction of thickness. A novel porosity distribution affecting the functionally graded volume fraction is presented. For the compact formulation used for cementite-based materials and already used in P-FGM, we have adapted it for the distribution of S-FGM. The equations of motion in the FG beam are derived using Hamilton's principle. The boundary conditions for beam FG are assumed to be simply supported. Navier's solution is used to obtain the closed form solutions of the FG beam. The numerical results of this work are compared with those of other published research to verify accuracy and reliability. The comparisons of different shear shape functions, the influence of porosity, thickness and inhomogeneity parameters on buckling and free vibration of the FG beam are all discussed. It is established that the present work is more precise than certain theories developed previously.

Investigating wave propagation in sigmoid-FGM imperfect plates with accurate Quasi-3D HSDTs

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.185-202
    • /
    • 2024
  • In this research paper, and for the first time, wave propagations in sigmoidal imperfect functionally graded material plates are investigated using a simplified quasi-three-dimensionally higher shear deformation theory (Quasi-3D HSDTs). By employing an indeterminate integral for the transverse displacement in the shear components, the number of unknowns and governing equations in the current theory is reduced, thereby simplifying its application. Consequently, the present theories exhibit five fewer unknown variables compared to other Quasi-3D theories documented in the literature, eliminating the need for any correction coefficients as seen in the first shear deformation theory. The material properties of the functionally graded plates smoothly vary across the cross-section according to a sigmoid power law. The plates are considered imperfect, indicating a pore distribution throughout their thickness. The distribution of porosities is categorized into two types: even or uneven, with linear (L)-Type, exponential (E)-Type, logarithmic (Log)-Type, and Sinus (S)-Type distributions. The current quasi-3D shear deformation theories are applied to formulate governing equations for determining wave frequencies, and phase velocities are derived using Hamilton's principle. Dispersion relations are assumed as an analytical solution, and they are applied to obtain wave frequencies and phase velocities. A comprehensive parametric study is conducted to elucidate the influences of wavenumber, volume fraction, thickness ratio, and types of porosity distributions on wave propagation and phase velocities of the S-FGM plate. The findings of this investigation hold potential utility for studying and designing techniques for ultrasonic inspection and structural health monitoring.

A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates

  • Bourada, Fouad;Amara, Khaled;Bousahla, Abdelmoumen A.;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.661-675
    • /
    • 2018
  • In this paper, buckling analysis of hybrid functionally graded plates using a novel four variable refined plate theory is presented. In this theory the distribution of transverse shear deformation is parabolic across the thickness of the plate by satisfying the surface conditions. Therefore, it is unnecessary to use a shear correction factor. The variations of properties of the plate through the thickness are according to a symmetric sigmoid law (symmetric S-FGM). The principle virtual works is used herein to extract equilibrium equations. The analytical solution is determined using the Navier method for a simply supported rectangular plate subjected to axial forces. The precision of this theory is verified by comparing it with the various solutions available in the literature.

Three dimensional dynamic response of functionally graded nanoplates under a moving load

  • Hosseini-Hashemi, Shahrokh;Khaniki, Hossein Bakhshi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.249-262
    • /
    • 2018
  • In this paper, reaction of functionally graded (FG) thick nanoplates resting on a viscoelastic foundation to a moving nanoparticle/load is investigated. Nanoplate is assumed to be thick by using second order shear deformation theory and small-scale effects are taken into account in the framework of Eringen's nonlocal theory. Material properties are varied through the thickness using FG models by having power-law, sigmoid and exponential functions for material changes. FG nanoplate is assumed to be on a viscoelastic medium which is modeled using Kelvin-Voight viscoelastic model. Galerkin, state space and fourth-order Runge-Kutta methods are employed to solve the governing equations. A comprehensive parametric study is presetned to show the influence of different parameters on mechanical behavior of the system. It is shown that material variation in conjunction with nonlocal term have a significant effect on the dynamic deformation of nanoplate which could be used in comprehending and designing more efficient nanostructures. Moreover, it is shown that having a viscoelastic medium could play an important role in decreasing these dynamic deformations. With respect to the fresh studies on moving atoms, molecules, cells, nanocars, nanotrims and point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors by showing the influence of the moving path, velocity etc. on dynamic reaction of the plate.

Static and Free Vibration Analysis of FGM Plates on Pasternak Elastic Foundation (Pasternak 탄성지반위에 놓인 점진기능재료 판의 정적 및 자유진동 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.529-538
    • /
    • 2016
  • The simplified plate theory is presented for static and free vibration analysis of power-law(P) and sigmoid(S) Functionally Graded Materials(FGM) plates. This theory considers the parabolic distribution of the transverse shear stress, and satisfies the condition that requires the transverse shear stress to be zero on the upper and lower surfaces of the plate, without the shear correction factor. The simplified plate theory uses only four unknown variables and shares strong similarities with classical plate theory(CPT) in many aspects such as stress-resultant expressions, equation of motion and boundary conditions. The material properties of the plate are assumed to vary according to the power-law and sigmoid distributions of the volume fractions of the constituents. The Hamilton's principle is used to derive the equations of motion and Winkler-Pasternak elastic foundation model is employed. The results of static and dynamic responses for a simply supported FGM plate are calculated and a comparative analysis is carried out. The results of the comparative analysis with the solutions of references show relevant and accurate results for static and free vibration problems of FGM plates. Analytical solutions for the static and free vibration problems are presented so as to reveal the effects of the power law index, elastic foundation parameter, and side-to-thickness ratio.