Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.1.067

Study on stability and free vibration behavior of porous FGM beams  

Bennai, Riadh (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef)
Atmane, Redhwane Ait (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Bernard, Fabrice (LGCGM, IINSA RENNES France)
Nebab, Mokhtar (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef)
Mahmoudi, Noureddine (Department of mechanical engineering, university of Saida)
Atmane, Hassen Ait (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef)
Aldosari, Salem Mohammed (Enhanced Composite and Structures Centre, School of Aerospace, Transport, and Manufacturing, Cranfield University)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Publication Information
Steel and Composite Structures / v.45, no.1, 2022 , pp. 67-82 More about this Journal
Abstract
In this paper, buckling and free vibration of imperfect, functionally graded beams, including porosities, are investigated, using a higher order shear strain theory. Due to defects during the manufacturing process, micro porosities may appear in the material, hence the appearance of this imperfection in the structure. The material properties of the beams are assumed to vary regularly, with power and sigmoid law, in the direction of thickness. A novel porosity distribution affecting the functionally graded volume fraction is presented. For the compact formulation used for cementite-based materials and already used in P-FGM, we have adapted it for the distribution of S-FGM. The equations of motion in the FG beam are derived using Hamilton's principle. The boundary conditions for beam FG are assumed to be simply supported. Navier's solution is used to obtain the closed form solutions of the FG beam. The numerical results of this work are compared with those of other published research to verify accuracy and reliability. The comparisons of different shear shape functions, the influence of porosity, thickness and inhomogeneity parameters on buckling and free vibration of the FG beam are all discussed. It is established that the present work is more precise than certain theories developed previously.
Keywords
buckling; free vibration; functionally graded beams; high order shear deformation theory; porosity coefficient; porosity;
Citations & Related Records
Times Cited By KSCI : 25  (Citation Analysis)
연도 인용수 순위
1 Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.   DOI
2 Bahl, S. and Bagha, A.K. (2021), ''Finite element modeling and simulation of the fiber-matrix interface in fiber reinforced metal matrix composites'', Materials Today: Proceedings, 39, 70-76. https://doi.org/10.1016/j.matpr.2020.06.160.   DOI
3 Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), ''Wave dispersion properties in imperfect sigmoid plates using various HSDTs'', Steel Compos. Struct., 33(5), 699. https://doi.org/10.12989/scs.2019.33.5.699.   DOI
4 Bennai, R., Ait Atmane, H., Ayache, B., Tounsi, A., Bedia, E.A. and Al-Osta, M.A. (2019 b), "Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory", Earthq. Struct., 16(5), 547-561. https://doi.org/10.12989/eas.2019.16.5.547.   DOI
5 Kumar Bagha, A. and Bahl, S. (2021), ''Strain energy and finite element analysis to predict the mechanical properties of vapor grown carbon fiber reinforced polypropylene nanocomposites'', Materials Today: Proceedings, 41, 265-268. https://doi.org/10.1016/j.matpr.2020.09.034.   DOI
6 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.   DOI
7 Melaibari, A., Abo-bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Static stability of higher order functionally graded beam under variable axial load", Alexandria Eng. J., 59(3), 1661-1675. https://doi.org/10.1016/j.aej.2020.04.012.   DOI
8 Fenjan, N.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scaledependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283.   DOI
9 Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.   DOI
10 Ebrahimi, F. and Jafari, A. (2016), ''Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory'', Struct. Eng. Mech., 59(2), 343-371. https://doi.org/10.12989/sem.2016.59.2.343.   DOI
11 Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.049.   DOI
12 Kar, V.R. and Panda, S.K. (2016a), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014.   DOI
13 Mellal, F., Bennai, R., Nebab, M., Atmane, H.A., Bourada, F., Hussain, M. and Tounsi, A. (2021), "Investigation on the effect of porosity on wave propagation in FGM plates resting on EFs via a quasi-3D HSDT", Waves Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2021.1983235.   DOI
14 Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015.   DOI
15 Kar, V.R. and Panda, S.K. (2015), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661.   DOI
16 Kar, V.R., Panda, S.K. (2016c), "Geometrical nonlinear free vibration analysis of FGM spherical panel under nonlinear thermal loading with TD and TID properties", J. Thermal Stresses, 39(8), 942-959. https://doi.org/10.1080/01495739.2016.1188623.   DOI
17 Kar, V.R. and Panda, S.K. (2016e), "Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method", J. Vib. Control, 22(7), 1935-1949. https://doi.org/10.1177/1077546314545102.   DOI
18 Nebab, M., Ait Atmane, H., Bennai, R. and Tounsi, A. (2019a), ''Effect of variable elastic foundations on static behavior of functionally graded plates using sinusoidal shear deformation'', Arab. J. Geosci.. 12(24), 809. https://doi.org/10.1007/s12517-019-4871-5.   DOI
19 Gupta, A. and Talha, M. (2017a), "Nonlinear flexural and vibration response of geometrically imperfect gradient plates using hyperbolic higher-order shear and normal deformation theory", Compos. Part B: Eng., 123, 241-261. https://doi.org/10.1016/j.compositesb.2017.05.010.   DOI
20 Ghandourah, E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. http://dx.doi.org/10.12989/scs.2020.36.3.293.   DOI
21 Gupta, A. and Talha, M. (2017b), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stabil. Dyn., 1850013. https://doi.org/10.1142/S021945541850013X.   DOI
22 Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "Mechanicalhygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects", Adv. Air. Spacecraft Sci., 7(2), 169-186. https://doi.org/10.12989/aas.2020.7.2.169.   DOI
23 Bennai, R., Fourn, H., Ait Atmane, H., Tounsi, A. and Bessaim, A. (2019 a), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049.   DOI
24 Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005.   DOI
25 Kar, V.R. and Panda, S.K. (2016b), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperaturedependent and temperature-independent properties", J. Pressure Vessel Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701.   DOI
26 Koizumi, M. and Niino, M. (1995), "Overview of FGM research in Japan", MRS Bull., 1995, 19-21. https://doi.org/10.1557/S0883769400048867   DOI
27 Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019b), ''Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory'', Earthq. Struct., 17(5), 447-462.https://doi.org/10.12989/eas.2019.17.5.447.   DOI
28 Nebab, M., Ait Atmane, H., Bennai, R., Tounsi, A. and Bedia, E. (2019c), ''Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT'', Struct. Eng. Mech.. 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511.   DOI
29 Mantari, J.L. and Guedes Soares, C. (2013), ''A novel higher-order shear deformation theory with stretching effect for functionally graded plates'', Compos. Part B: Eng., 45(1), 268-281. https://doi.org/10.1016/j.compositesb.2012.05.036.   DOI
30 Kumar Saini, M., Kumar Bagha, A., Kumar, S. and Bahl, S. (2021), ''Finite element analysis for predicting the vibration characteristics of natural fiber reinforced epoxy composites'', Materials Today: Proceedings, 41, 223-227. https://doi.org/10.1016/j.matpr.2020.08.717.   DOI
31 Frahlia, H., Bennai, R., Nebab, M., Ait Atmane, H. and Tounsi, A. (2022), "Assessing effects of parameters of viscoEF on the dynamic response of functionally graded plates using a novel HSDT theory", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2022.2062632.   DOI
32 Bagha, A.K. and Bahl, S. (2021), ''Finite element analysis of VGCF/pp reinforced square representative volume element to predict its mechanical properties for different loadings'', Materials Today: Proceedings, 39, 54-59. https://doi.org/10.1016/j.matpr.2020.06.108.   DOI
33 Barati, M.R., Shahverdi, H. and Zenkour, A.M. (2017), "Electromechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory", Mech. Adv. Mater. Struct., 24(12), 987-998. https://doi.org/10.1080/15376494.2016.1196799.   DOI
34 Bennai, R., Atmane, H.A. and Tounsi, A. (2015), ''A new higherorder shear and normal deformation theory for functionally graded sandwich beams'', Steel Compos. Struct., 19(3), 521-546. http://dx.doi.org/10.12989/scs.2015.19.3.521.   DOI
35 Gupta, A., Talha, M. and Chaudhari, V.K. (2016), "Natural frequency of functionally graded plates resting on elastic foundation using finite element method", Procedia Technology, 23, 163-170. https://doi.org/10.1016/j.protcy.2016.03.013.   DOI
36 Gupta, A. and Talha, M. (2018), "Static and stability characteristics of geometrically imperfect FGM plates resting on pasternak elastic foundation with microstructural defect", Arab. J. Sci. Eng., 43, 4931-4947. https://doi.org/10.1007/s13369-018-3240-0.   DOI
37 Ibnorachid, Z., Boutahar, L., EL Bikri, K. and Benamar, R. (2019), ''Buckling temperature and natural frequencies of thick porous functionally graded beams resting on elastic foundation in a thermal environment'', Adv. Acoust. Vib., https://doi.org/10.1155/2019/7986569.   DOI
38 Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. https://doi.org/10.1007/s00707-013-0883-5.   DOI
39 Kendall, K., Howard, A., Birchall, J., Prat, P., Proctor, A. and Jefferies, S.A. (1983), "The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials", Phil. Trans. Roy. Soc. Lond. A., 310(1511), 139-153. https://doi.org/10.1098/rsta.1983.0073.   DOI
40 Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.   DOI
41 Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B, 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035.   DOI
42 Akbas, S.D. (2017), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.   DOI
43 Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207. https://doi.org/10.22055/JACM.2017.21540.1107.   DOI
44 Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.   DOI
45 Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.   DOI
46 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
47 Yousfi, M., Atmane, H.A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), ''Free vibration of FG beams with porosity by a shearleedeformation theory with four variables'', Struct. Eng. Mech., 66(3), 353-368. https://data.doi.or.kr/cite/10.12989/scs.2018.27.1.109.   DOI
48 Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015b), "Static behaviour of functionally graded sandwich beams using a quasi-3D theory", Compos. Part B. Eng., 68, 59-74 https://doi.org/10.1016/j.compositesb.2014.08.030.   DOI
49 Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.   DOI
50 Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loading using VIM", Steel Compos. Struct., 17(5), 753-776. https://doi.org/10.12989/scs.2014.17.5.753.   DOI
51 Yaghoobi, H. and Taheri, F. (2020), "Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets", Compos. Struct., 252, 112700. https://doi.org/10.1016/j.compstruct.2020.112700.   DOI
52 Shahsavari, D., Shahsavarib, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aeros. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.   DOI
53 Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Ait Atmane, H. and Tounsi, A. (2018), ''Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory'', Earthq. Struct., 15(4), 369- 382. https://doi.org/10.12989/eas.2018.15.4.369.   DOI
54 Karami, B., Shahsavari, D., Nazemosadat, Seyed M.R., Li, L. and Ebrahimi, A. (2018) "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349.   DOI
55 Simsek, M. (2010a), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92(10), 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008.   DOI
56 Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)10970207(20000110/30)47:1/3<6 63::AID-NME787>3.0.CO;2-8.   DOI
57 Reddy, J.N. and Cheng, Z.Q. (2001), "Three-dimensional thermomechanical deformations of functionally graded rectangular plates", Eur. J. Mech. A/Solid., 20, 841-855. https://doi.org/10.1016/S0997-7538(01)01174-3.   DOI
58 Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063.   DOI
59 Jamaludin, S.N.S., Basri, S., Ahmad Hussain., Dheya Shujaa AlOthmany., Mustapha, F. and Nuruzzaman, D.M. (2014), "Three-dimensional finite element modeling of thermomechanical problems in functionally graded hydroxyapatite/titanium plate", Mathem. Prob. Eng., 371462, 1-20. https://doi.org/10.1155/2014/371462.   DOI
60 Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.   DOI
61 Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68, 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.   DOI
62 Nguyen, T.K., Vo, T.H. and Thai, T.H. (2013), ''Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B. 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011.   DOI
63 Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.   DOI
64 Sofiyev, A.H., Alizada, A.N., Akin, O., Valiyev, Avcar, M. and Adiguzel, S. (2011), "On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations", Acta Mech., 223(1), 189-204. https://doi.org/10.1007/s00707-011-0548-1.   DOI
65 Shimpi, R.P. and Patel, H.G. (2006), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296(4-5), 979-999. https://doi.org/10.1016/j.jsv.2006.03.030.   DOI
66 Simsek, M. (2010b), ''Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories'', Nuclear Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013.   DOI
67 Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.   DOI
68 Vo, T.P., Thai, H.T., Nguyen, T.K., Maheri, A. and Lee, J. (2014), "Finite element model for vibration and buckling of functionally graded sandwich beams based on a refined shear deformation theory", Eng. Struct., 64, 12-22. https://doi.org/10.1016/j.engstruct.2014.01.029.   DOI
69 Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.   DOI
70 Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015a), "A quasi- 3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct. 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.   DOI