• Title/Summary/Keyword: Sidelobe reduction

Search Result 20, Processing Time 0.022 seconds

A Study of Sidelobe Reduction Based on FFT in Ultrasound Images (FFT를 기반으로 한 초음파 영상의 Sidelobe 영향 감소에 관한 연구)

  • 정목근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.40-47
    • /
    • 1999
  • Focusing is widely used to increase the resolution in ultrasound transmit field. It increases signal levels returning from the mainlobe direction and decreases those due to sidelobe directions. However, when the sidelobes cannot be completely canceled, the resulting image resolution is greatly deteriorated. This paper proposes a method of improving the resolution by scaling the received signal according to the difference between the mainlobe and sidelobe levels computed in the frequency domain by the use of Fourier transform. The proposed method is verified by computer simulation and experiments, and is shown to be highly effective in narrowing the mainlobe width and decreasing the sidelobe levels.

  • PDF

Sidelobe Reduction Method for Improvement of Airborne SAR Image (항공 SAR 영상 화질 개선을 위한 사이드로브 감소 기법)

  • Shin, Hee-Sub;Ok, Jae-Woo;Woo, Jae-Choon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.11
    • /
    • pp.1027-1030
    • /
    • 2015
  • In the airborne SAR, the motion errors induced by atmospheric turbulence decrease the resolution and increase the sidelobes. If the sidelobes are not properly compensated, the image quality is degraded. Thus, in this paper, we have introduced the sidelobe reduction method to increase the image quality. After we calculate the scene center based on the estimated squint angle for the flight path partitioned by the subaperture technique, we perform the motion compensation for the scene center. Then, after we perform the recursive sidelobe reduction for the region of interest in the reconstructed SAR image, we extend it for the full image.

Sidelobe Reduction of Low-Profile Array Antenna Using a Genetic Algorithm

  • Son, Seong-Ho;Park, Ung-Hee
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.95-98
    • /
    • 2007
  • A low-profile phased array antenna with a low sidelobe was designed and fabricated using a genetic algorithm (GA). The subarray distances were optimized by GA with chromosomes of 78 bits, a population of 100, a crossover probability of 0.9, and a mutation probability of 0.005. The array antenna has 24 subarrays in 14 rows, and is designed as a mobile terminal for Ku-band satellite communication. The sidelobe level was suppressed by 6.5 dB after optimization, compared to the equal spacing between subarrays. The sidelobe level was verified from the far-field pattern measurement by using the fabricated array antenna with optimized distance.

  • PDF

Reduction of sidelobe levels in multicarrier radar signals via the fusion of hill patterns and geometric progression

  • Raghavendra, Channapatna Gopalkrishna;Prakash, Raghu Srivatsa Marasandra;Panemangalore, Vignesh Nayak
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.650-659
    • /
    • 2021
  • Multi-carrier waveforms have several advantages over single-carrier waveforms for radar communication. Employing multi-carrier complementary phase-coded (MCPC) waveforms in radar applications has recently attracted significant attention. MCPC radar signals take advantage of orthogonal frequency division multiplexing properties, and several authors have explored the use of MCPC signals and the difficulties associated with their implementation. The sidelobe level and peak-to-mean-envelope-power ratio (PMEPR) are the key issues that must be addressed to improve the performance of radar signals. We propose a scheme that applies pattern-based scaling and geometric progression methods to enhance sidelobe and PMEPR levels in MCPC radar signals. Numerical results demonstrate the improvement of sidelobe and PMEPR levels in the proposed scheme. Additionally, autocorrelations are obtained and analyzed by applying the proposed scheme in extensive simulation experiments.

Matrix Decomposition for Low Computational Complexity in Orthogonal Precoding of N-continuous Schemes for Sidelobe Suppression of OFDM Signals

  • Kawasaki, Hikaru;Matsui, Takahiro;Ohta, Masaya;Yamashita, Katsumi
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.117-123
    • /
    • 2017
  • N-continuous orthogonal frequency division multiplexing (OFDM) is a precoding method for sidelobe suppression of OFDM signals and seamlessly connects OFDM symbols up to the high-order derivative for sidelobe suppression, which is suitable for suppressing out-of-band radiation. However, it severely degrades the error rate as it increases the continuous derivative order. Two schemes for orthogonal precoding of N-continuous OFDM have been proposed to achieve an ideal error rate while maintaining sidelobe suppression performance; however, the large size of the precoder matrices in both schemes causes very high computational complexity for precoding and decoding. This paper proposes matrix decomposition of precoder matrices with a large size in the orthogonal precoding schemes in order to reduce computational complexity. Numerical experiments show that the proposed method can drastically reduce computational complexity without any performance degradation.

A study of the sidelobe supprion in an acousto-optic wavelength tunable filter utilizing a SAW-guide directional coupler (방향성 결합구조의 음향파 도파로를 이용한 음향광학형 파장가변 광 필터의 부모드 억제에 관한 연구)

  • 임경훈;정홍식
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.423-428
    • /
    • 2000
  • We have demonstrated a -8 dB additional reduction in the intensity sidelobe of an apodized-interaction-strength guide-wave acousto-optic filter with a center passband of 1551.6 nm. Acoustic-intensity weighting was achieved by launching a surface acoustic wave (SAW) beam in a straight acoustic waveguide, and gradually transferring this SAW intensity to the active device, and back out, by evanescent-wave coupling across a 50 !lm barrier over a 19 rom interaction length. The intensity sidelobe was -4.27 dB for an unapodized filter with abmpt onset and cutoff of the interaction, but sidelobes were reduced to at most -12.68 dB for a SAW intensity with raised-cosine weighting. The RF driving power was 17.78 mW. A linear tuning rate of 8.86 nmIMHz and a spectral width of -1.7 nm were demonstrated. rated.

  • PDF

A Study on the Control of Asymmetric Sidelobe Levels and Multiple Nulling in Linear Phased Array Antennas (선형 위상 배열 안테나의 비대칭 Sidelobe 레벨 제어 및 다중 Nulling에 관한 연구)

  • Park, Eui-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1217-1224
    • /
    • 2009
  • This paper newly proposes a methodology towards computing antenna element weights which are satisfying asymmetric sidelobe levels(SLLs) specified arbitrarily on both sides of the main beam pattern, in the linear phased array antenna pattern synthesis problem. Opposite to the conventional methods in which the element weights are directly optimized from the array factor, this method is based on the optimum perturbations of complex roots inherent to the Schelkunoff's polynomial form which is described for the array factor. From the proposed methodology, the capability of nulling the directions of multiple jammers is also possible by independently perturbing only the complex roots corresponding to each jamming direction, hence allowing an enhancement of the simplicity of the numerical procedure by means of a proper reduction of the dimension of the solution space. The complex weights over the array are then easily computed by substituting the optimally perturbed complex roots to the Schelkunoff's polynomial. Some examples are examined and numerically verified by substituting the extracted weights into the array factor equation.

New Peak-to-Average Power Ratio Reduction Scheme for an OFKM-CDMA System (OFDM-CDMA 시스템에서 새로운 PAPR 감쇄기법)

  • 주양익;이연우;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7B
    • /
    • pp.1320-1325
    • /
    • 2000
  • A very simple and effective peak power reduction scheme for a downlink OFDM-CDMA system is proposed using the relationship between peak-to-average power ratio (PAPR) and out-of-phase autocorrelation. Since power spectrum and autocorrelation function are Fourier transform pair, the PAPR property of the sequences can be estimated by the out-of-phase autocorrelation function of the spreading sequences. Thus, by scrambling the spread data in the frequency domain, we can reduce the sidelobe energy of autocorrelation, and at last, suppress PAPR in the proposed OFDM-CDMA system.

  • PDF

Array Resolution Improving Methods for Beamforming Algorithm (빔형성방법에서의 분해능 향상 기법에 관한 연구)

  • Hwang, Seon-Gil;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.164-169
    • /
    • 2005
  • Microphone array techniques are being used widely in wind tunnel measurements for identification of the distributed aerodynamic noise sources on the model being tested. Depending on the frequencies and sound levels, conventional beamforming algorithm has limitation in separating two adjacent sources. Several modifications to the classical beamforming have been developed to enhance way resolution and reduce sidelobe levels. In this Paper the robust adaptive beamforming and the CLEAN algorithm are used to compare to the result of conventional beamforming method. It is found that the CLEAN algorithm is capable of pin-pointing locations of multiple sources nearby, while these sources are unidentifiable with robust adaptive or conventional beamforming techniques.

  • PDF

Parameter Selection Procedure of Parabolic Reflector Antenna for the Optimum Synthetic Aperture Radar Performances

  • Yoon, Seong Sik;Lee, Jae Wook;Lee, Taek Kyung;Yi, Dong Woo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.251-258
    • /
    • 2013
  • A procedure for antenna parameter selections is proposed that considers the relationships between synthetic aperture radar performance and the antenna parameters of a parabola-type reflector antenna with a central flat dish. The effects of a central dish designed for weight reduction on the antenna beam pattern are also quantitatively analyzed using commercially available software based on the physical optics algorithm. The results of the theoretical analysis and simulation predict that a larger size of the central dish results in an increase in the sidelobe level, which is the reason for the increase in two important ambiguities, such as range ambiguity ratio (RAR) and azimuth ambiguity ratio (AAR). The dependence of RAR and AAR on Pulse repetition frequency is also analyzed and discussed.