
1  |   INTRODUCTION

Bandwidth is a key concept in radio communications, which 
should be utilized efficiently. There is a huge demand for 
bandwidth in radar communications if single-carrier modu-
lation schemes are adopted. The concept of orthogonal fre-
quency division multiplexing (OFDM) can be utilized for 
the transmission of the radar signals to reduce bandwidth 
requirements [1]. Recently, there has been rapid growth 
in multimedia wireless applications based on an increase 
in multimedia traffic. Significant research has focused on 
the development of innovative technology to improve data 
transmission rates. Similarly, in the area of radar communi-
cations, there is a need for novel approaches to balance the 

trade-off between range and resolution. The most signifi-
cant features of radar signals are their range and resolution. 
The range of a radar signal can be improved by increasing 
the pulse width, but this technique reduces the resolution. 
Therefore, to improve the resolution, pulse width must be 
reduced. To balance range and resolution, it has been sug-
gested to apply the pulse compression technique [2]. Pulse 
compression takes advantage of the best features of both 
long and short-duration pulses and facilitates the use of 
long waveforms to obtain high energy while simultaneously 
matching the resolution of a short pulse via the internal 
modulation of a long pulse.

Levanon [3] defined the concept of multicarrier comple-
mentary phase-coded (MCPC) signals. Digital phase coding 
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as a means of internal modulation was used to develop MCPC 
signals. However, MCPC signals have a poor peak-to-mean-
envelope-power ratio (PMEPR). In [4], various techniques 
were used to improve PMEPR levels, but sidelobe levels 
were not improved significantly. If efforts are made to reduce 
PMEPR values, then sidelobe levels increase and vice versa. 
Therefore, there is a need to balance PMEPR and sidelobe 
levels.

Several researchers have conducted investigations and 
experiments to curtail the impact of PMEPR on OFDM 
signals. The majority of these works have focused on data 
transmission applications, such as novel adaptive tone res-
ervation methods [5], improved tone reservation schemes 
with fast convergence [6], and signal-to-clipping-noise-ratio-
based tone reservation methods [7]. A number of researchers 
have analyzed the reduction in PMEPR values in multicar-
rier signals for radar functions. In [8], a phase modulation 
method was proposed. An iterative least-squares method was 
used in [9]. A genetic algorithm approach was presented in 
[10], and a random phase updating algorithm was adopted 
in [11]. For condensing sidelobes, experiments were con-
ducted using a constellation adjustment technique in [12]. Li 
et al. [13] proposed a sequential quadratic programming 
technique and genetic algorithm to reduce sidelobe levels, 
but this method results in poor computational efficiency. The 
Broyden–Fletcher–Goldfarb–Shanno method was adopted in 
[14]. All of the studies mentioned focused on reducing either 
PMPER or sidelobe levels separately. A few researchers have 
investigated the joint reduction of these issues [15–17], but 
their solutions are limited to non-radar applications. In [18], 
the Zadoff-Chu sequence and a signal cancellation method 
were applied to reduce autocorrelation sidelobe levels and 
maintain a low PMEPR. Improvements of 0.7075 in terms 
of the PMEPR and 3.28  dB in terms of the sidelobe level 
were achieved, but this system is limited to five carriers. This 
paper proposes a novel algorithm to develop multicarrier 
radar signals by fusing hill patterns and geometric progres-
sion methods to reduce both PMEPR and sidelobe levels for 
large numbers of carriers with various sequence orderings.

The remainder of this paper is organized as follows. In 
Section II, MCPC signal implementation is illustrated. In 
Section III, the two-sample sliding window adder (TSSWA) 
method is discussed. Section IV discusses subcarrier weight-
ing in MCPC signals. Section V proposes the development 
of MCPC signals based on a differential geometric progres-
sion technique. Section VI presents comparisons and detailed 

discussions. Section VII summarizes our conclusions based 
on experimental results.

2  |   CHARACTERISTICS OF MCPC 
SIGNALS

MCPC radar signals are developed based on the concept of 
an OFDM scheme. MCPC radar signals are composed of 
N subcarriers that are all transmitted in parallel with a fre-
quency spacing of tc which yields an OFDM signal. The 
concept of transmitting all orthogonal subcarriers is well-
known in the communications field. MCPC radar signals 
are implemented by modulating the phases of orthogonal 
subcarriers using polyphase codes, called P3 and P4. The 
schematic is shown in Figure 1 for developing the MCPC 
radar signal.

MCPC signals are developed based on the cyclic shifts of 
P4 sequences. The phases for a P4 [2] digital phase modula-
tion scheme with N phases are defined in (1).

This phase coding scheme contains a small number of 
phase values exhibiting ideal periodic thumbtack autocor-
relation functions with peaky mainlobes and zero sidelobes.

The complex envelope of an MCPC OFDM signal is de-
fined by (2).

There are N subcarriers and N phase modulation 
chips, wheres tc is the duration of each chip. The term 
exp

{

j
[

2�fst (N + 1∕2 − u)
]}

 in (2) corresponds to the sub-
carrier u. The term exp

(

j�u, v

)

 represents the vth element of 
the uth sequence modulating subcarrier u. This term mainly 
depends on v. When v = 1, it represents the unit pulse in 
the first chip duration. Similarly, when v = N, it represents 
the unit pulse in the Nth chip duration. �u, v denotes the vth 

(1)�n =
�

N
(n − 1) (n − N − 1) where n = 1, 2, 3, . . . , N.

(2)

s(t)=
∑N

v = 1

[

∑N

u = 1
exp

(

j�u, v

)

exp
{

j
[

2�fst
(

N+1

2
−u

)]}]

x[t− (v−1)tc]

(3)where x (t) =

{

1 if 0 ≤ t ≤ t
c
,

0 otherwise.
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phase element of the uth sequence. The term fs denotes the 
frequency separation between any two adjacent subcarriers.

In an MCPC signal, N sequences are transmitted through N 
subcarriers and each sequence contains N phase-modulated chips. 
Therefore, N different subcarriers are modulated by N different 
phase sequences of length N. The frequency separation between 
any two consecutive subcarriers is the reciprocal of the chip dura-
tion, which defines an OFDM signal. The defining feature of such 
signals is pulse-to-pulse diversity (ie, each pulse is complemen-
tary to the other pulses). Additionally, this type of signal provides 
high spectral efficiency because the power spectrum is approxi-
mately rectangular with a spectral width of N∕2tc and the average 
sidelobe level is 22.56 dB for P4-based 5 × 5 MCPC signals.

A 7 × 7 MCPC signal is considered with a phase sequence 
ordering of 1 234 567, which yields the minimum PMEPR. For 
a 7 × 7 MCPC signal, a total of 7! = 5040 orderings are possible, 
but the smallest PMEPR is obtained for continuous orderings of 
phase sequences, such as 1 234 567, 2 345 671, and 7 123 456. 
Signals with smaller PMEPR values provide larger sidelobe lev-
els for autocorrelation, as shown in Figure 2, which results in 
poor detection performance. Signals with high PMEPR values 
provide small sidelobe levels. A reduction in PMEPR can be 
observed for the sequence ordering 1 234 567. Therefore, there 
is a trade-off between PMEPR and sidelobe levels.

3  |   MCPC BASED ON THE TSSWA 
ALGORITHM

Lewis [19] proposed the TSSWA as a technique for reduc-
ing sidelobe levels using polyphase codes of type P1 and P4. 

In [20,21], the TSSWA technique was applied to individual 
carriers to reduce peak sidelobe levels. Here, we attempt to 
utilize a similar approach to reduce sidelobe levels in multi-
carrier signals.

Figure 3 presents a schematic of a TSSWA. The input sig-
nal for the TSSWA is divided into two basic operations. The 
first is to apply an autocorrelation function to the signal and 
the second is to delay the signal by tc. This delay operation 
is performed in two sub-stages, each with a delay of tc. The 
resulting signal yields reduced sidelobe levels that can be ob-
served in simulation results.

Figure 4 presents the results of MCPC signals after applying 
the TSSWA technique to three, five, seven, and nine carriers. 
One can see that the sidelobe levels are significantly reduced.

Table 1 compares the signal levels of MCPC signals based 
on P4 polyphase codes and the TSSWA method for three, five, 
seven, and nine carriers. In a TSSWA, operations are not per-
formed on the complex envelopes of MCPC signals. Instead, ma-
nipulation is applied directly to the autocorrelation functions of 
MCPC signals to obtain a clearer distinction between the main-
lobe and sidelobes. Therefore, this algorithm does not have an 
impact on PMEPR levels. One can see an improvement in the 
sidelobe levels of MCPC signals based on the TWSSA compared 
with P4. Therefore, there is the potential to improve the balance 
between PMEPR and sidelobe levels in multicarrier signals.

4  |   MCPC BASED ON 
SUBCARRIER WEIGHTING

Subcarrier weighting [22] is another technique that is used 
to suppress the sidelobe levels of OFDM systems. In this al-
gorithm, simple scaling is performed on the subcarriers of 
OFDM signals. The scaling factors are selected in such a 
manner that sidelobes are controlled. With a few modifica-
tions, this principle can be applied to MCPC signals to im-
prove the levels of PMEPR and sidelobes.

In (2), the subcarriers are modulated by digitally coded 
phases and a unit factor is selected for scaling. This equation 
can be modified by including the term w, which is a weighting 
coefficient that is used to scale every subcarrier in an MCPC 
signal. The corresponding modified equation is shown in (4).

(4)

s (t) =

N
∑

v= 1

N
∑

u= 1

exp
(

j�u, v

)

w (u) exp
{

j
[

2�fst
]

(

N + 1

2
− u

)}

x
[

t − (v − 1) tc
]

.

F I G U R E  2   Autocorrelation function of a 7 × 7 MCPC signal for 
the ordering 1 234 567
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Here, an N × N MCPC signal is considered and the subcar-
rier weighting concept is applied. Each subcarrier is assigned 
a specific frequency associated with a weight, as shown in 
Figure 5. The subcarrier weighting is modified to achieve dis-
tinctive asymmetric weighting, pattern-based weighting, and 
differential geometric progression weighting.

4.1  |  Distinctive asymmetric weighting 
(DSW)

DSW was developed based on subcarrier weighting, as shown 
in Figure 6. The weighting coefficients are obtained from the 
ratio of the maximum weight gmax to the minimum weight 
gmin and denoted by R such that the weight corresponding to 
one subcarrier is distinct from the weights of other subcar-
riers. In Figure 6, one can see that there is no symmetry of 
subcarrier frequency components about the zero frequency, 
which is also observed in P4-based MCPC signals. The 
weights corresponding to each subcarrier are calculated from 
g1 to gN with a step size of X = (gmax − gmin)∕ (N − 1) for an 
N × N MCPC signal. The weights are normalized by dividing 
each weight by gmax. Therefore, the weights assigned to dif-
ferent frequencies form the shape of a ramp.

In Table  2, one can see that the proposed weighting 
scheme yields favorable results for random values of R.

R =
√

5 yields a desirable sidelobe level reduction for a 5 × 5 
MCPC signal. However, enhanced results are not obtained in 
the cases of 7 × 7 and 9 × 9 MCPC signals for the same value 
of R. These results indicate that favorable ratios need not be 
deterministic. This finding motivated us to focus on further 
improvement.

F I G U R E  4   MCPC signals based on the TSSWA technique for 
3 × 3, 5 × 5, 7 × 7 and 9 × 9 carriers
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T A B L E  1   Comparison of sidelobe levels of MCPC signals based 
on P4 and the TSSWA method

Carriers
SL (in dB)
(P4-based)

SL (in dB)
(TSSWA-based)

3 × 3 10.44 67.56

5 × 5 13.70 52.37

7 × 7 12.78 43.53

9 × 9 12.96 40.89

F I G U R E  5   Subcarrier weighting
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T A B L E  2   Sidelobe and PMPER levels of a 5 × 5 MCPC signal 
based on DSW for the sequence ordering 12 345

R SL (in dB) PMEPR
√

2 13.65 2.0274
√

3 14.16 2.0760
√

4 14.07 2.0873
√

5 14.16 2.0980
√

6 13.55 2.1040
√

7 13.52 2.1072
√

8 13.27 2.1088
√

9 13.07 2.1093
√

10 12.94 2.1092
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4.2  |  Pattern-based symmetric weighting 
(PBSW)

The DSW technique was developed for multicarrier radar 
signals in Section 4.1. This method can be extended to derive 
the PBSW technique from the original subcarrier weighting 
scheme. In PBSW, subcarrier scaling is performed by main-
taining the symmetry of subcarrier weights. By performing 
scaling on subcarriers, four variants of symmetric patterns 
were developed. These variants are called the hill, valley, W, 
and M patterns. Weights are selected to scale the subcarrier 
frequencies such that these symmetric patterns can be ob-
tained. These four symmetric pattern variants can be obtained 
if w(u) in (4) is modified to w (u) = w ((N + 1∕2) − u).

Figure 7A presents the hill pattern, where the weights 
of each subcarrier are modified such that they follow the 
shape of a hill. The weights increase from the far end of 
the zero frequency toward the near end on either side. 
Figure  7B presents the valley pattern, where the weights 
of each subcarrier are generated such that they all follow 
the pattern of a V. The weights decrease from the far end 
of the zero frequency toward the near end on either side. 
Figure  7C presents the M pattern, where the weights of 
each subcarrier are designed such that they follow the pat-
tern of an M. Figure 7D presents the W pattern, where the 

weights of each subcarrier are designed such that they fol-
low the pattern of a W.

Table 3 presents the results for the sidelobe and PMEPR 
levels of MCPC signals developed based on the PBSW 
method for five subcarriers with a sequence ordering of 12 
345 and weighting factors of w1 to w5. One can see that a 
reduction in sidelobe levels only occurs in the case of weight-
ing based on the hill pattern. Compared to the hill pattern, 
the valley pattern yields much worse results. In the other two 
cases, no significant changes can be observed in terms of 
sidelobe levels.

4.3  |  Weighting based on a raised 
cosine pattern

The results obtained from hill-pattern-based weighting in-
dicate that the reduction of sidelobe levels is possible only 
when the weight coefficients decrease symmetrically from 
the zero frequency on both sides. A raised cosine function 
follows a similar pattern, and there are many windows whose 
coefficients follow the pattern of a raised cosine, including 
Hamming, Hanning, Blackman, and Kaiser windows. Here, 
we attempt to develop an MCPC signal based on a raised 
cosine pattern.

F I G U R E  7   (A) Hill pattern, (B) Valley pattern, (C) M pattern, and (D) W pattern
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Table 4 presents the results for MCPC signals developed 
based on raised cosine patterns. The same sequence order-
ing of 12 345 was selected for this table. One can see that 
no improvements in terms of PMEPR or sidelobe levels are 
obtained when using Hamming, Hanning, or Blackman win-
dow coefficients as the subcarrier weights for MCPC signals. 
However, desirable results are obtained using Kaiser window 
coefficients with � varying from 0.3 to 1.5.

5  |   DIFFERENTIAL GEOMETRIC 
PROGRESSION (DGP) WEIGHTING

In this section, we present a novel technique for developing 
MCPC signals based on a DGP weighting approach. The 
weighting coefficients are obtained based on the concept of 
a hill pattern discussed in Section 4. Figure  8 presents the 
weighting factors developed using the DGP method based 
on favorable results obtained from the hill pattern. This 
combination of the hill pattern and GP defines the concept 

of DGP weighting. The differences between consecutive 
weights always follow a GP (ie, 

(

1 − w
1

)

, 
(

w1 − w2

)

, . . . ,
(

wN+1∕2−1 − wN+1∕2

)

 represent a geometric progression). The 
slope of the line joining the tips of two adjacent subcarrier 
frequencies increases according to a GP on either side of the 
zero frequency. As the number of subcarriers increases, this 
pattern approaches a raised cosine pattern.

Consider an MCPC signal with N chips and N subcarriers 
by setting N = 5. In this case, a 5 × 5 MCPC signal is devel-
oped with subcarrier frequencies of −2fs, − fs, 0, fs, and 2fs 
and allocated with weights of m, n, 1,n, and m, respectively. 
Here, m and n are selected such that m < n < 1. The corre-
sponding frequency representation is presented in Figure 9A, 
where the factor b represents the common ratio. The resulting 
weights are defined in (5).

Similarly, an MCPC signal was developed for seven sub-
carriers. Therefore, a 7 × 7 MCPC signal with subcarrier fre-
quencies of −3fs, −2fs, − fs, 0, fs, 2fs, and 3fs was given weights 
m, n, p, 1, p, n, and m, respectively, such that m < n < p < 1. 
The resulting frequency representation is presented in 
Figure 9(B). The derived weights are defined in (6) and (7).

n − m = b (1 − n) ,

n − m = b − bn,

n (1 + b) = b + m,

(5)n =
b + m

1 + b
.

p − n = b (1 − p) ,

n − m = b2 (1 − p) = b (p − n) ,

p =
n + p

1 + b
,

T A B L E  3   Experimental results of pattern-based weighting for 
5 × 5 MCPC signals for the sequence ordering 12 345

Pattern w1 w2 w3 w4 w5

SL 
(dB) PMEPR

Hill 0.1 0.9 1.0 0.9 0.1 20.50 2.5176

Valley 1.0 0.9 0.1 0.9 1.0 5.747 2.4408

M 0.1 1.0 0.7 1.0 0.1 10.35 3.1058

W 1.0 0.1 0.7 0.1 1.0 6.515 2.6913

T A B L E  4   Results of subcarrier weighting using window 
coefficients for a 5 × 5 MCPC signal for the sequence ordering 12 345

Window SL (dB) PMEPR

Hamming 12.39 2.0687

Hanning 12.90 2.2392

Blackman 12.71 2.0687

Kaiser (� = 0.1) 13.74 2.0814

Kaiser (� = 0.2) 14.44 1.7299

Kaiser (� = 0.3) 14.45 1.7261

Kaiser (� = 0.4) 14.42 1.7199

Kaiser (� = 0.5) 14.40 1.7124

Kaiser (� = 0.6) 14.37 1.7031

Kaiser (� = 0.7) 14.33 1.6917

Kaiser (� = 0.8) 14.26 1.6781

Kaiser (� = 0.9) 14.24 1.6624

Kaiser (� = 1.0) 14.17 1.6446

Kaiser (� = 1.5 13.89 1.6247

Kaiser (� = 2) 13.53 1.5739

Kaiser (� = 2.5) 13.43 1.7756

F I G U R E  8   DGP weighting
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Finally, for nine subcarriers, a corresponding 9 × 9 MCPC 
signal with subcarrier frequencies of −4fs, −3fs, −2fs, − fs, 0, 

fs, 2fs, 3fs, and 4fs was assigned weights m, n, p, q, 1, q, p, n, 
and m, respectively, such that m < n < p < q < 1. The corre-
sponding frequency representation is presented in Figure 9C. 
The derived weights are defined in (8), (9), and (10).

We defined equations for MCPC signals with five, seven, 
and nine subcarriers. The relationships between each weighting 
coefficient for various MCPC lengths are defined as follows:

n − m = b (p − n) ,

n =
bp + m

1 + b
,

n =
b
(

n+b

1+b

)

+ m

1 + b
,

(6)n =
b2 + (1 + b)m

(1 + b)2 − b
,

p =

b2 +(1+b)m

(1+b)2 −b
+ b

(1 + b)
,

(7)p =
m + b (1 + b)

(1 + b)2 − b
.

(q − p) = b (1 − q) ,

(p − n) = b2 (1 − q) b(q − p),

(n − m) = b3 (1 − q) = b (p − n) ,

q − p = b − bq,

q =
b + p

1 + b
,

p − n = b (q − p) ,

n = (1 + b) p − bq,

n = (1 + b) p − b

(

b + p

1 + p

)

,

n =

[

(1 + b)2 − b
]

p − b2

1 + b
,

n − m = b (p − n) ,

n =
bp + m

1 + b
,

(8)p =
m + b2

(1 + m)2 − 2b
,

(9)q =

(

m + b2
)

+ b
[

(1 + b)2 − 2b
]

(1 + b)
[

(1 + b)2 − 2b
]

,

n − m

p − n
= b,

(1 + b) n − m = bp,

(1 + b) n − m = b

(

m + b2

(1 + m)2 − 2b

)

,

(10)n =
m
[

(1 + b)2 − b
]

+ b3

(1 + b)
[

(1 + b)2 − 2b
]

.

F I G U R E  9   (A) DGP weighting for a 5 × 5 MCPC signal, (B) 
DGP weighting for a 7 × 7 MCPC signal, and (C) DGP weighting for a 
9 × 9 MCPC signal
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5 × 5: n =
b+m

1+b
where m < n < 1 ,

7 × 7: n =
b

2 + (1 + b) m

(

1 + b
2
)

− b

,

p =
m+b(1+b)

(1+b2)−b
where m < n < p < 1,

9 × 9: n =
m
[

(1+b)2 −b
]

+b3

(1+b)
[

(1+b)2 −2b
],

p =
m+b2

(1+b)2 −2b
,

q =
(m+b2)+b

[

(1+b)2 −2b
]

(1+b)
[

(1+b)2 −2b
] ,

where m < n < p < q < 1.

Here, m, n, p, and q are weighting coefficients and the 
factor b represents the common ratio.

For the 5 × 5 MCPC signal, the weights are defined in (5), 
where m is considered an independent variable. By varying 
the value of m from 0.1 to 0.9, several ordered pairs (m, n) are 
generated. Based on the results, it is evident that a reduction 
in the sidelobe level is possible for all values of m. However, 
our analysis indicates that as the sidelobe level decreases, the 
PMEPR level increases significantly for certain ordered pairs 
of (m, n) in the range of 0.1 ≤ m ≤ 0.4. For m values ranging 
from 0.5 to 0.9, both PMEPR and sidelobe levels are reduced, 
as shown in Table 5. Therefore, this range is more favorable 
for the simultaneous reduction of sidelobes and PMEPR. 
For a 7 × 7 MCPC signal, the weights are defined in (6) and 
(7). In this case, favorable results are obtained in the range 
of 0.4 ≤ m ≤ 0.8, as shown in Table  6. For a 9 × 9 MCPC 
signal, the weights are defined in (8), (9), and (10). In this 
case, desirable results are obtained for the full range of m 
from 0.1 to 0.9, as shown in Table 7. As the common ratio 
b increases, improvements in terms of PMEPR and sidelobe 
level reduction can be observed for an increased range of m. 
Figure 10A presents an autocorrelation plot for a 5 × 5 MCPC 

signal developed using the DGP method for the sequence 
ordering 12 345 by choosing the factor m = 0.6. Similarly, 
Figure 10B presents an autocorrelation plot of a 7 × 7 MCPC 
signal developed using the DGP method for the sequence or-
dering 1 234 567 by choosing the factor m = 0.5.

6  |   COMPARISON AND 
ANALYSIS OF VARIOUS SIDELOBE 
REDUCTION METHODS

A lower PMEPR level is desirable for the reliable operation 
of linear power amplifiers. Lower sidelobe levels are essen-
tial for improving the detection capabilities of radar. MCPC 
signals provide many advantages, such as protection against 
jamming and clutter, but PMEPR and sidelobe levels repre-
sent significant obstacles to their successful implementation. 
Therefore, to leverage the favorable features of MCPC sig-
nals, the reduction of sidelobe levels is crucial.

A TSSWA can be used at the receiving end to precisely 
distinguish the mainlobe from sidelobes. This involves the 

T A B L E  5   Experimental results for a 5 × 5 MCPC signal with the 
ordering 12 345 and b = 2

m SL (dB) PMEPR

P4 based 13.80 1.7200

0.1 25.18 2.3845

0.2 26.88 2.1685

0.3 25.10 1.9752

0.4 24.21 1.8090

0.5 23.47 1.6706

0.6 23.62 1.5586

0.7 21.14 1.5984

0.8 18.08 1.6479

0.9 15.73 1.6932

T A B L E  6   Experimental results for a 7 × 7 MCPC signal with the 
ordering 1 234 567 and b = 2

m SL (dB) PMEPR

P4 based 12.80 1.9300

0.1 17.97 2.4117

0.2 18.61 2.1140

0.3 19.14 1.9469

0.4 19.66 1.9084

0.5 19.65 1.9067

0.6 18.58 1.9135

0.7 17.02 1.9208

0.8 15.49 1.9259

0.9 14.14 1.9280

T A B L E  7   Experimental results for a 9 × 9 MCPC signal with the 
ordering 123 456 789 and b = 2

m SL (dB) PMEPR

P4 based 12.80 7.3000

0.1 22.38 5.6147

0.2 21.76 5.9247

0.3 21.24 6.2100

0.4 20.72 6.5560

0.5 19.94 6.6676

0.6 18.82 6.8479

0.7 17.53 6.9990

0.8 16.35 7.1238
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direct manipulation of autocorrelation without disturbing 
the original signal. However, subcarrier weighting involves 
changing the weights of subcarriers. DSW yields desirable 
results for random values of maximum-to-minimum-weight 
ratios. However, favorable ratios are not deterministic be-
cause frequency symmetry around the zero frequency is not 
maintained.

PBSW involves the scaling of subcarriers by maintaining 
frequency symmetry in a particular shape. The weights that 
are used in this analysis follow a specific pattern. Desirable 
sidelobe reduction is evident when the differences in weights 
between the zero frequency subcarrier and adjacent subcar-
riers are small and the differences in weights between the 
zero frequency subcarrier and furthest subcarriers are large. 
PMEPR reduction cannot be associated with a reduction in 
sidelobe levels because weights are picked randomly. Negative 
weights result in sidelobe reduction but significantly increase 

the PMEPR. The best PMEPR was obtained for a hill-pattern-
based MCPC signal. This motivated us to perform additional 
experiments using raised cosine windows. A Kaiser window 
with particular values of β yielded the most favorable results. 
The potential for sidelobe reduction using a hill pattern and 
Kaiser window motivated us to consider a weighting scheme 
based on the DGP method. For certain ranges of weights, it is 
possible to obtain a joint reduction of PMEPR and sidelobe 
levels. In a DGP-based 7 × 7 MCPC signal with an ordering 
of 1 234 567, an improvement of 4.22 dB was observed in the 
PMEPR level compared with a P4-based MCPC signal.

7  |   CONCLUSION

In this paper, we proposed novel subcarrier weighting tech-
niques to develop MCPC signals. Various methods were 
employed to reduce PMEPR and sidelobe levels. First, the 
TSSWA method was used for reducing the sidelobe levels 
of MCPC signals. However, the envelope of a signal can-
not be manipulated using this approach. Therefore, signifi-
cant improvements in the PMEPR level were not observed 
based on the TSSWA method. Hill-pattern-based weighting 
results in superior reduction in sidelobe levels. In this ap-
proach, a reduction in the sidelobe level was achieved, but 
no significant improvements in terms of the PMEPR level 
were achieved. When using Kaiser window coefficients as 
scaling factors, certain values of � resulted in the reduction 
of both sidelobe and PMEPR levels. Additionally, the re-
duction of PMEPR and sidelobe levels was achieved using 
the DGP method.
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