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Abstract: N-continuous orthogonal frequency division multiplexing (OFDM) is a precoding method 

for sidelobe suppression of OFDM signals and seamlessly connects OFDM symbols up to the high-

order derivative for sidelobe suppression, which is suitable for suppressing out-of-band radiation. 

However, it severely degrades the error rate as it increases the continuous derivative order. Two 

schemes for orthogonal precoding of N-continuous OFDM have been proposed to achieve an ideal 

error rate while maintaining sidelobe suppression performance; however, the large size of the 

precoder matrices in both schemes causes very high computational complexity for precoding and 

decoding. This paper proposes matrix decomposition of precoder matrices with a large size in the 

orthogonal precoding schemes in order to reduce computational complexity. Numerical 

experiments show that the proposed method can drastically reduce computational complexity 

without any performance degradation.     
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1. Introduction 

Orthogonal frequency division multiplexing (OFDM) 

is a digital modulation scheme of high spectral efficiency 

and robustness against multipath fading, and the 

advantages have led to OFDM being adopted in several 

telecommunications technologies. One of the drawbacks 

associated with the design of OFDM transmitters is that 

high out-of-band radiation is generated by the high 

sidelobes of OFDM signals. A critical issue concerning 

OFDM-based cognitive radio systems is that unwanted in-

band and out-of-band radiation interferes with the adjacent 

bands. Various methods of sidelobe suppression have been 

proposed [1-7]. 

N-continuous OFDM [4] is a precoding method to 

seamlessly connect consecutive OFDM symbols up to the 

high-order derivative for sidelobe suppression, which is 

suitable for suppressing out-of-band radiation. However, 

the error rate performance is inevitably degradeds due to 

irreversible distortion introduced into the transmitted 

symbol by its precoding, and it becomes worse when 

increasing the continuous derivative order. 

To remove this error rate degradation, orthogonal 

precoding of N-continuous OFDM was initially proposed 

[5], which can achieve both sidelobe suppression 

performance of N-continuous OFDM and ideal error rate 

performance, although data rate loss occurs. Then, Zheng 

et al. [6] presented improved orthogonal precoding where 

the data rate loss can be limited to half that obtained by 

Jaap van de Beek [5]. However, the computational 

complexity for precoding and decoding is huge due to the 

large size of the precoder matrix in both schemes [5, 6]. 

Unfortunately, matrix decomposition (i.e., singular 

value decomposition [SVD] of the precoder matrix) is 

ineffective for computational complexity reduction since it 

is essentially full rank and cannot be decomposed into a 

product of smaller matrices. Thus, some contrivance is 

required, for example, the means used by Kawasaki et al. 

[7]. 

This paper proposes novel matrix decomposition in 
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order to reduce the computational complexity in both 

schemes for orthogonal precoding of N-continuous OFDM. 

Numerical experiments show that the proposed method can 

drastically reduce the computational complexity without 

any performance degradation. 

2. N-continuous OFDM  

In this paper, the OFDM signal is written as 
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where 
s

T  is the OFDM symbol duration, and   
g
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guard interval length. The i -th OFDM symbol, ( )  
i
s t , 
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modulating symbols, such as 
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,
  K

i k
d ×∈C  is a precoded modulating symbol 

transmitted in the k -th subcarrier of the i -th OFDM 

symbol, K { }0 1
 , ,

K
k k −= ⋯  is the set of the subcarrier 

indices, and  K  is the number of subcarriers. 

In order to render the consecutive OFDM symbol 
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s t  and its first ( )N K<  derivatives, ( ) ,

n

in
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continuous at the transition of OFDM symbols for sidelobe 

suppression, N-continuous OFDM [4] shows constraints 

such as 
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for 0,n N= …  From the OFDM symbol in (2), the 

constraints in (10) can be cast in matrix form, such as 
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precoding the data symbol 
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containing ( ) D K≤  information symbols in some finite 

constellation. 

Jaap van de Beek and Berggren [4] determined a 

solution for Eq. (4) with D K= , and the outstanding 

sidelobe suppression performance can be achieved, but the 

error rate is inevitably degraded due to irreversible 

distortion that becomes larger as order N  increases. To 

improve this error rate, the first and second schemes for 

orthogonal precoding of N-continuous OFDM with D K<  

were proposed by Jaap van de Beek [5] and Zheng et al. 

[6], respectively. In following subsections, we will 

describe the first scheme [5] and then the second scheme 

[6]. 

2.2 The First Scheme of Orthogonal 
Precoding 

Jaap van de Beek scheme [5] is considered a sufficient 

constraint to (4), such as 
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AΦ
B

A
. Note that the upper and lower half of 

1
B  reflect the continuity constraints at the OFDM symbol 

start and end, respectively, and thus, (5) actually leads to 

(4): ( )1
0

i i i−= = =AΦd Ad Ad . 

Jaap van de Beek [5] proposed orthogonal precoding 

with ( )2 1D K N= − +  that determines the solution for (5) 

as 
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and 
( )2 1

1,

K N

c

× +∈G C  are respectively the last 

( )2 1D K N= − +  and the first ( )2 1K N× +  columns of 

unitary matrix 
1 1, 1,c o

 =  V G G  obtained from the SVD 

that factorizes 
1

B  as 
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N N+ × +∈U C  is a unitary matrix, and 
( )2 1

1

N K+ ×∈Σ  C  

is a diagonal matrix containing the singular values of A  in 

non-increasing order along its diagonal. Because 

1 1,o
=B G O  is satisfied, precoding (6) satisfies constraint 

(5). 

The receiver performs the decoding that inverts 

transmitter precoding (6) as 

 

 
1,

H

i o i
=r G rɶ  (9) 

 

where 
i
rɶ  is the i -th received OFDM symbol after channel 

equalization. Decoding (9) provides 
i i
=r d  in the 

noiseless condition, since 
1, 1,

H

o o D
=G G I  is satisfied. 



IEIE Transactions on Smart Processing and Computing, vol. 6, no. 2, April 2017 

 

119 

Jaap van de Beek [5] showed that orthogonal precoding 

can achieve both the sidelobe suppression performance of 

N-continuous OFDM and the ideal error rate, but the data 

rate is reduced by ( ) ( )/ 2 1 /K D K N K− = + . 

2.2 The Second Scheme of Orthogonal 
Precoding 

To reduce the data rate loss of the first scheme [5], the 

second scheme [6] was proposed. From H

K
=ΦΦ I , the 

second scheme rewrites the initial constraint to (4) as 
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H
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where 
2
=B AΦ . 

Zheng et al. [6] proposed orthogonal precoding with 

( )1D K N= − +  that finds the solutions for (10) as 
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2
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2

N N+ × +∈U C  is a unitary matrix, and 
( )1

2

N K+ ×∈Σ C  

is a diagonal matrix containing the singular values of 
2

B  

in non-increasing order along its diagonal. Because 

2 2,o
=B G O  and 

2 2, 2, 2

H

c c
=B G G B , precoding (11) satisfies 

constraint (10). 

For 
2, 2,

H

o o D
=G G I  and 

2,o 2,

H

c
=G G O  , the receiver 

performs the decoding corresponding to (9), such as 
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The second scheme [6] can reduce the data rate loss to 

half; it can be limited to ( ) ( )/ 1 /K D K N K− = + , 

compared with that of ( )2 1 /N K+  in the first scheme. 

3. Analysis and the Proposed System 

The first and second schemes of orthogonal precoding 

can achieve effective sidelobe suppression and an ideal 

error rate, but a serious problem for feasibility is huge 

computational complexity; computations (6), (9), (11), and 

(15) each require ( )2
O K  multiplications, since typically 

N K≪  [4-6], and they are caused by the large size of 

precoder matrices (7) and (12). 

If the precoder matrix with a large size is rank deficient, 

a matrix decomposition algorithm like SVD is a valid 

method to reduce computational complexity, since it can 

be decomposed into a product of smaller matrices. On the 

other hand, in the first scheme [6], the SVD of 
1,o

G  does 

not lead to reduction in computational complexity because 

{ } { } { }1, 1, 1,
rank rank rank

H

o o o D
D= = =G G G I indicates that 

the precoder matrix is of full rank, unfortunately. Then, 

1
 V as the body 

1,o
G  in (8) is unitary, where rank is surely 

full, which means that the SVD of 
1
 V is also worthless for 

reducing computational complexity. A similar discussion 

also occurs over precoder matrix 
2,o

G  in the second 

scheme. Thus, some contrivance is required [6]. 

In order to reduce the computational complexity in 

both schemes of orthogonal precoding, this paper proposes 

novel matrix decomposition of the precoder matrices. 

Without loss of generality, we denote 
1,o

G  or 
2,o

G  by  
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where
1 2

 ,=V V V  and ( )2 1 , 1M N N= + +  with D =  

K M−  in the first or second schemes, respectively.  

Instead of V  that cannot be decomposed, we consider 

the SVD of 
K

−V I . The reason is that V  can be 

reconstructed just by adding 1 onto its diagonal elements 

without heavy computation after the decomposition, and 

this property benefits Eq. (21). The SVD of 
K

−V I  is 

written as 

 

 H

K
− =V I XYZ  (17) 

 

where [ ]0 1 1
 

K −= …X x x x  and [ ]0 1 1K −= …Z z z z  are 

 K K×  unitary matrices, and K K×∈Y C  is a diagonal 

matrix containing the singular values of 
K

−V I  in non-

increasing order along its diagonal, expressed as 

 

 ( )0 1 1
diag σ ,

K
σ σ −=Y ⋯  (18) 

 

and 
0 1 1

  
K

σ σ σ −≥ ≥ ≥⋯  are the singular values of 
K

−V I . 

From the Eckart-Young-Mirsky theorem, matrix 

K
−V I  is truncated by replacing the singular values with 

zero, except for the first  L largest values, i.e., 

 

 H

K
− ≅V I XYZɶ  (19) 



Kawasaki et al.: Matrix Decomposition for Low Computational Complexity in Orthogonal Precoding of N-continuous Schemes ...   

 

120 

where K K×∈Yɶ C  is a diagonal matrix expressed as 

 

 ( )0 1 1
diag , , , ,0, ,0

L
σ σ σ −=Y ⋯ ⋯ɶ  (20) 

 

Then, we can obtain the decomposition of V , such as 

 

  H H

K K
≅ + = +V I XYZ I QRɶ  (21) 

 

where 
K L×∈Q C  is a matrix that consists of the first 

 L columns of the matrix � XY , expressed as 

 

 [ ]0 0 1 1 1 1L L
σ σ σ − −= …Q x x x  (22) 

 

and K L×∈R C  is the matrix that consists of the first L  

columns of the matrix Z , expressed as 

 

 [ ]0 1 1 0 1 1

H

L K− − = … = … R z z z z z z
' ' '

   (23) 

 

We analyzed Y  expressing the singular values 
K

−V I  

under the experimental conditions from Jaap van de Beek 

[5] and Zheng et al. [6]. For example, in the first scheme, 

Fig. 1 shows the first 64 largest diagonal elements of Y , 

that is, the singular values 
0 64
, ,σ σ⋯ . The results show 

that almost all diagonal elements can be considered zeros, 

except for the first few. Furthermore, it is shown that the 

number of non-zero diagonal elements are found to be 

( ) ( )  2 4 1 ,2 1L M N N= = + +  in the first and second 

schemes, respectively. Thus it seems a practical choice that 

L  is set to 2M  in order to obtain an equivalent 

decomposition of the precoder matrix. 

Combining (16) and (21), we finally obtain the 

decomposed expression of the   K D×  matrix 
o

G : 

 

 ( ) M D M DH

o K

D D
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where L D×∈S C  is the matrix composed of the last 

D K M= −  columns of HR , expressed as 
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Applying the result of (24) to the first scheme, 

precoding (6) and decoding (9) are modified as follows: 
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where 
( )4 1

1

K N× +∈Q  C and 
( )4 1

1

N D+ ×∈S  C are derived from 

(24) in the first scheme for ( )2 1M N= +  with 

( )2 1D K N= − + . Note that the first terms in (26) and 

(27) do not need any computation by virtue of the zero and 

identity matrices. Thus, precoding (26) and decoding (27) 

both require ( ) ( )( )8 1 1L K D N K N+ = + − −  complex 

multiplications if ( )2 4 1 ,L M N= = +  whereas conven- 

tional Eqs. (6) and (9) both require ( ) 22 2K K N K− − ≃  

complex multiplications, since  N K≪ . The proposed 

method of (26) and (27) is referred to as Proposed 1. 

Similarly, precoding (11) and decoding (15) in the 

second scheme are rewritten from the result of (24) as 

 

 ( ) 2 2 2, 2, 11
 

H
H H

D i i c c iD N −× +
 ≅ + + d O I d Q S d G G Φ d

i
 (28) 

 ( ) 2 21
 H H

i D i iD N× +
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where 
( )2 1

2

K N× +∈Q C  and 
( )2 1

2

N D+ ×∈S C  in the second 

scheme for 1M N= +  with ( )1 .D K N= − +  The 

proposed precoding (28) and decoding (29) each require 

 

(a) The first scheme [5]; 600K =   

(K { 300, , 1} {1, , 300})= − − ∪⋯ ⋯  

 

 

(b) The second scheme [6]; 600K =   

(K { 500, , 201} {201, , 500})= − − ∪⋯ ⋯   

Fig. 1. Singular values in 
K

−V I ; 1 / 15=
s

T ms and 

9 / 128=
g s

T T . The conditions in Figs. 1(a) and 1(b) are 

based on those of Fig. 3(a) and Fig. 3(b) [5],
respectively. 
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( ) ( ) ( )( )2 1 2 1 3 1L K D N K N K N+ + + = + − −  and  

( )L K D+ = ( )( )2 1 2 1N K N+ − −  complex multipli- 

cations if L = ( )2 2 1M N= + , whereas the conventional 

Eqs. (11) and (15) each require ( )1K K N+ +  and 

( )1K K N− −  complex multiplications. The proposed 

method in (28) and (27) is referred to as Proposed 2. 

4. Numerical Experiments 

To verify that the proposed method maintains the 

performance of the orthogonal precoding, we conducted 

numerical experiments under the same conditions as those 

in Fig. 1. In the proposed method, 2L M= =  

( ) ( )4 1 , 2 1N N+ +  is used for the first and second 

schemes, respectively. Figs. 2 and 3 show the power 

spectral density of the proposed method and the bit error 

rate of the proposed method in an additive white Gaussian 

noise (AWGN) channel, respectively. These results 

indicate that, just as in conventional orthogonal precoding, 

the performance of the proposed method is identical to the 

conventional orthogonal precoding of N-continuous 

OFDM if either scheme is applied. 

Next, the complex multiplications were measured to 

evaluate the computational complexity in the proposed 

method. Tables 1 and 2 show the results for the first and 

the second schemes, respectively. These results show that 

the proposed method can drastically reduce the 

computational complexity, compared with conventional 

orthogonal precoding. For example, Table 2(a) shows that 

Proposed 2 requires only 4.0%  and 2.6%  in precoding 

and decoding, respectively, compared with conventional 

orthogonal precoding [6]. Comparing Tables 1 and 2, 

Proposed 2 has a bit less computational complexity than 

Proposed 1, while the conventional methods [5, 6] have the 

reverse relationship. As a result, the proposed method can 

allow the second scheme to achieve both half data rate loss 

and lower computational complexity, compared with the 

first scheme.  

5. Conclusion 

This paper proposed novel matrix decomposition of a 

precoder matrix with a large size in order to reduce the 

 

(a) The conditions in Fig. 1(a) 

 

 

(b) The conditions in Fig. 1(b) 

Fig. 2. Power spectral density of the original OFDM, 
and the conventional and the proposed methods. 

 

 

(a) The conditions in Fig. 1(a) 

 

 

(b) The conditions in Fig. 1(b) 

Fig. 3. Bit error rates in the AWGN channel. 
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computational complexity in schemes for orthogonal 
precoding of N-continuous OFDM. Numerical experiments 
showed that the proposed method does not degrade 
performance and can drastically reduce the computational 
complexity for precoding and decoding, e.g., into 4.0%  
and 2.6%,  respectively, compared with conventional 
orthogonal precoding of N-continuous OFDM. The 
proposed method can allow orthogonal precoding to 
achieve both lower data rate loss and lower computational 
complexity, compared with the conventional schemes. 
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Table 1. Comparison of complex multiplications in the 
first scheme [5]. 

(a) The conditions in Fig. 1(a) 

Method Precoding Decoding 

Conventional [5] 355,200 
(100%) 
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(100%) 

Proposed 1 19,072 
(5.4%) 
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(Example: 600K =  and 3N = ) 
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Proposed 1 37,888 
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37,888 
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(Example: 600K =  and 7N = ) 
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second scheme [6]. 
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