• Title/Summary/Keyword: SiO vapor

Search Result 625, Processing Time 0.028 seconds

A Study on Alkali ion-Sensitivity of $Si_{x}O_{y}N_{z}$ Fabricated by Low Pressure Chemical Vapor Deposition (저압화학기상 성장법으로 제작된 $Si_{x}O_{y}N_{z}$의 알칼리이온 감지성에 관한 연구)

  • Shin, P.K.;Lee, D.C.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.200-206
    • /
    • 1997
  • Using $SiCl_{2}H_{2}$, $NH_{3}$ and $N_{2}O$, we have fabricated silicon oxynitride ($Si_{x}O_{y}N_{z}$) layers on thermally oxidized silicon wafer by low pressure chemical vapor deposition. Three different compositions were achieved by controlling gas flow ratios($NH_{3}/N_{2}O$)) to 0.2, 0.5 and 2 with fixed gas flow of $SiCl_{2}H_{2}$. Ellipsometry and high frequency capacitance-voltage(HFCV) measurements were adapted to investigate the difference of the refractive index, dielectric constant, and composition, respectively. Regardless of nitride content, silicon oxynitrides had similar stability to silicon nitrides. The relative standing of alkali ion sensitivity in silicon oxynitride layers was influenced by nitride content. The better alkali ion-sensitivity was achieved by increasing oxide content in bulk of silicon oxynitrides.

  • PDF

The protection effects from water vapor permeation of inorganic films prepared by electron-beam evaporation technique (전자-선 증착 기술에 의해 성막된 다양한 무기 박막들의 투습 방지 특성)

  • Ryu, Sung-Won;Rhee, Byung-Roh;Kim, Hwa-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Various diatomic inorganic films and their composite films are packed as passivation films covering Ca cells on glass substrates by using an electron-beam evaporation technique. When these Ca cells are exposed to an ambient atmosphere, the water vapor penetrating through the passivation layers is absorbed in the Ca cells, resulting in a gradual progress of transparency in the Ca cells, which can be represented by changes of the optical transmittance in the visible range. Compared with the saturation times for the Ca cells to become completely transparent in the atmosphere, the protection effects of water vapor are estimated for various passivation films. The composite films consisting silicon oxide($SiO_2$) and tin oxide($SnO_2$) or zinc oxide(ZnO) are found to show a superior protection effect of water vapor as compared with diatomic inorganic films. Also, the main factors affecting the permeation of water vapor through the oxide films are found to be the polarizability and the packing density.

Optimization of remote plasma enhanced chemical vapor deposition oxide deposition process using orthogonal array table and properties (직교배열표를 쓴 remote-PECVD 산화막형성의 공정최적화 및 특성)

  • 김광호;김제덕;유병곤;구진근;김진근
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.171-175
    • /
    • 1995
  • Optimum condition of remote plasma enhanced chemical vapor deposition using orthogonal array method was chosen. Characteristics of oxide films deposited by RPECVD with SiH$_{4}$ and N$_{2}$O gases were investigated. Etching rate of the optimized SiO$_{2}$ films in P-etchant was about 6[A/s] that was almost the same as that the high temperature thermal oxide. The films showed high dielectric breakdown field of more than 7[MV/cm] and a resistivity of 8*10$^{13}$ [.ohmcm] around at 7[MV/cm]. The interface trap density of SiO$_{2}$/Si interface around the midgap derived from the high frequency C-V curve was about 5*10$^{10}$ [/cm$^{2}$eV]. It was observed that the dielectric constant of the optimized SiO$_{2}$ film was 4.29.

  • PDF

Enhanced Crystallization of Si at Low Temperature by $O_2$ Flow during Deposition

  • Nam, Hyoung-Gin;Koo, Kyung-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.15-18
    • /
    • 2007
  • Effects of $O_2$ flow during deposition on Si crystallization at low substrate temperature were studied. Silicon thin films were prepared on $SiO_2$ substrates in a low-pressure chemical vapor deposition chamber using a mixture of $SiH_4$ and $H_2$. In some cases $O_2$ was intentionally introduced during deposition. Growth of poly silicon was observed at the substrate temperature as low as $480^{\circ}C$ when $O_2$ was flowed during deposition implying that crystallization of Si was enhanced by $O_2$ flow. On the other hand, $O_2$ flow did not show any significant effects at higher substrate temperature, where deposition rate is relatively fast. Enhancement mechanism of Si crystallization by $O_2$ flow was suggested from these results.

  • PDF

Effect of Growth Temperature on the Properties of ZnO Films Grown by MOCVD (MOCVD로 제작한 ZnO의 성장온도에 따른 특성 변화)

  • Seo Hyun-Seok;Jeong Eui-Hyuk;Jo Jung-Yol;Choi Yearn-Ik;Seo O-Gweon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.4 s.13
    • /
    • pp.9-12
    • /
    • 2005
  • Characteristics of ZnO films grown on $Si-SiO_2$ substrates at temperatures of $200\sim400^{\circ}C$ by metalorganic chemical vapor deposition were investigated. The growth rates and mobilities of ZnO films were dependent on growth temperatures. The field-effect mobilities measured in thin-film transistor structure were $15cm^2/Vsec$.

  • PDF

Improvement of the Light Emission Efficiency on Nonpolar a-plane GaN LEDs with SiO2 Current Blocking Layer (무분극 a-plane 질화물계 발광다이오드에서 SiO2 전류 제한 층을 통한 발광 효율 증가)

  • Hwang, Seong Joo;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.175-179
    • /
    • 2017
  • In this study, we investigate the $SiO_2$ current blocking layer (CBL) to improve light output power efficiency in nonpolar a-plane (11-20) GaN LEDs on a r-plane sapphire substrate. The $SiO_2$ CBL was produced under the p-pad layer using plasma enhanced chemical vapor deposition (PECVD). The results show that nonpolar GaN LED light output power with the $SiO_2$ CBL is considerably enhanced compared without the $SiO_2$ CBL. This can be attributed to reduced light absorption at the p-pad due to current blocking to the active layer by the $SiO_2$ CBL.

A Study on the Potassium Gettering in Al-1%Si/SiO2/PSG Multilevel Thin Films (Al-1%Si/SiO2/PSG 적층 박막에서 potassium 게터링에 관한 연구)

  • Kim, Jin Young
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.5
    • /
    • pp.233-237
    • /
    • 2015
  • In order to investigate the potassium (K) gettering, Al-1%Si/$SiO_2$/PSG multilevel thin films were fabricated. Al-1%Si thin films and $SiO_2$/PSG passivations were deposited by using DC magnetron sputter techniques and APCVD (atmosphere pressure chemical vapor deposition), respectively. Heat treatment was carried out at $300^{\circ}C$ for 5 h in air. SIMS (secondary ion mass spectrometry) depth profiling analysis was used to determine the distribution of K, Al, Si, P, and other elements throughout the $SiO_2$/PSG passivated Al-1%Si thin film interconnections. Potassium peaks were observed throughout the $SiO_2$/PSG passivation layers, and especially the interface gettering at the $SiO_2$/PSG and at the Al-1%Si/$SiO_2$ interfaces was observed. Potassium gettering in Al-1%Si/$SiO_2$/PSG multilevel thin films is considered to be caused by a segregation type of gettering.

SiON/SiO2 Multilayer Deposited by PECVD for Low-Loss Waveguides (저손실 광도파로 제작을 위해 PECVD 법에 의해 증착된 SiON/SiO2 다층박막)

  • 김용탁;김동신;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.197-201
    • /
    • 2004
  • SiO$_2$ and SiON thick films were deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) technique on silicon wafer (100) using SiH$_4$ and $N_2$O as precursor gases. In this work, the influence of rf power, and rf bias power on the optical and physical properties of SiO$_2$ and SiON thick films is presented. The refractive index decreases with increasing rf power, and rf bias power. The refractive index of the films varied from 1.4493 to 1.4952 at wavelength at 1552 nm, with increasing rf power, the nitrogen content decreases while the oxygen content increases, in a manner that the O/N ratio increases approximately linearly.

Multidimensional ZnO light-emitting diode structures grown by metal organic chemical vapor deposition on p-Si (p형 Si 기판위에 성장된 ZnO 다층형복합구조의 이종접합구조 LED 제작)

  • Kim, Dong-Chan;Kong, Bo-Hyun;Han, Won-Suk;Choi, Mi-Kyung;Cho, Hyung-Koun;Lee, Jong-Hun;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.84-84
    • /
    • 2008
  • A multidimensional ZnO light-emitting diode LEDstructure comprising film/nanorods/substrate was fabricated on a p-type Si substrate using metal organic chemical vapor deposition at relatively low growth temperature. The filmlike top layer used for the metal contact was continuously formed on the ZnO nanorods by varying the growth conditions and the resulting structure allowed us to utilize the nanorods with intense emission as an active layer. We investigated the performance of the resulting multidimensional LED. An extremely high breakdown voltage and low reverse leakage current as well as typical rectification behavior were observed in the I-V characteristics.

  • PDF

Vertical Growth of Amorphous SiOx Nano-Pillars by Pt Catalyst Films (Pt 촉매 박막을 이용한 비정질 SiOx 나노기둥의 수직성장)

  • Lee, Jee-Eon;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.699-704
    • /
    • 2018
  • One-dimensional nanostructures have attracted increasing attention because of their unique electronic, optical, optoelectrical, and electrochemical properties on account of their large surface-to-volume ratio and quantum confinement effect. Vertically grown nanowires have a large surface-to-volume ratio. The vapor-liquid-solid (VLS) process has attracted considerable attention for its self-alignment capability during the growth of nanostructures. In this study, vertically aligned silicon oxide nano-pillars were grown on Si\$SiO_2$(300 nm)\Pt substrates using two-zone thermal chemical vapor deposition system via the VLS process. The morphology and crystallographic properties of the grown silicon oxide nano-pillars were investigated by field emission scanning electron microscopy and transmission electron microscopy. The diameter and length of the grown silicon oxide nano-pillars were found to be dependent on the catalyst films. The body of the silicon oxide nano-pillars exhibited an amorphous phase, which is consisted with Si and O. The head of the silicon oxide nano-pillars was a crystalline phase, which is consisted with Si, O, Pt, and Ti. The vertical alignment of the silicon oxide nano-pillars was attributed to the preferred crystalline orientation of the catalyst Pt/Ti alloy. The vertically aligned silicon oxide nano-pillars are expected to be applied as a functional nano-material.