Browse > Article
http://dx.doi.org/10.5762/KAIS.2018.19.1.699

Vertical Growth of Amorphous SiOx Nano-Pillars by Pt Catalyst Films  

Lee, Jee-Eon (Medical Device Evaluation Center, Korea Conformity Laboratories)
Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.19, no.1, 2018 , pp. 699-704 More about this Journal
Abstract
One-dimensional nanostructures have attracted increasing attention because of their unique electronic, optical, optoelectrical, and electrochemical properties on account of their large surface-to-volume ratio and quantum confinement effect. Vertically grown nanowires have a large surface-to-volume ratio. The vapor-liquid-solid (VLS) process has attracted considerable attention for its self-alignment capability during the growth of nanostructures. In this study, vertically aligned silicon oxide nano-pillars were grown on Si\$SiO_2$(300 nm)\Pt substrates using two-zone thermal chemical vapor deposition system via the VLS process. The morphology and crystallographic properties of the grown silicon oxide nano-pillars were investigated by field emission scanning electron microscopy and transmission electron microscopy. The diameter and length of the grown silicon oxide nano-pillars were found to be dependent on the catalyst films. The body of the silicon oxide nano-pillars exhibited an amorphous phase, which is consisted with Si and O. The head of the silicon oxide nano-pillars was a crystalline phase, which is consisted with Si, O, Pt, and Ti. The vertical alignment of the silicon oxide nano-pillars was attributed to the preferred crystalline orientation of the catalyst Pt/Ti alloy. The vertically aligned silicon oxide nano-pillars are expected to be applied as a functional nano-material.
Keywords
amorphous; catalyst film; nano-pillar; silicon oxide; vertical growth; VLS process;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Iijima, "Helical microtubules of graphitic carbon", Nature, Vol. 354, pp. 56-58, 1991. DOI: https://doi.org/10.1038/354056a0   DOI
2 D. Gao, R. He, C. Carraro, R. T. Howe, P. Yang, and R. Maboudian, "Selective Growth of Si Nanowire Arrays via Galvanic Displacement Processes in Water-in-Oil Microemulsions", Journal of American Chemical Society, Vol. 127, pp. 4574-4575, 2005. DOI: https://doi.org/10.1021/ja043645y   DOI
3 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers" Science, Vol. 292, pp. 1897-1899, 2001. DOI: https://doi.org/10.1126/science.1060367   DOI
4 H-K. Park, M. H. Oh, S-W. Kim, G-H. Kim, D-H. Youn, S. Lee, S-H. Kim, K-C. Kim, and S-L. Maeng, "Vertically Well-Aligned ZnO Nanowires on c-$Al_2O_3$ and GaN Substrates by Au Catalyst", ETRI Journal, Vol. 28, No. 6, pp. 787-789, 2006. DOI: https://doi.org/10.4218/etrij.06.0206.0138   DOI
5 C. H. Wang, A. S. W. Wong, and G. W. Ho, "Facile Solution Route to Vertically Aligned, Selective Growth of ZnO Nanostructures Arrays", Langmuir, Vol. 23, pp. 11960-11963, 2007. DOI: https://doi.org/10.1021/la702296q   DOI
6 J-S. Noh, J. M. Lee, and W. Lee, "Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection", Sensors, Vol. 11, pp. 825-851, 2011. DOI: https://doi.org/10.3390/s110100825   DOI
7 S. H. Lee, D. H. Lee, W. J. Lee, and S. O. Kim, "Tailored Assembly of Carbon Nanotubes and Graphene", Advanced Functional Materials, Vol. 21, pp. 1338-1354, 2011. DOI: https://doi.org/10.1002/adfm.201002048   DOI
8 H. Na, J. H. Park, J. Hwang, and J. Kim, "Site-specific growth and density control of carbon nanotubes by direct deposition of catalytic nanoparticles generated by spark discharge", Nanoscale Research Letters, Vol. 8, p. 409, 2013. DOI: https://doi.org/10.1186/1556-276X-8-409   DOI
9 D. Xu, X. Yan, P. Diao, and P. Yin, "Electrodeposition of Vertically Aligned Palladium Nanoneedles and Their Application a Active Substrates for Surface-Enhanced Raman Scattering", The Journal of Physical Chemistry, Vol. 118, pp. 9758-9768, 2014. DOI: https://doi.org/10.1021/jp500667f   DOI
10 L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, and S. Wang, "ZnO nanorod gas sensor for ethanol detection", Sensors and Actuators B, Vol. 162, pp. 237-243, 2012. DOI: https://doi.org/10.1016/j.snb.2011.12.073   DOI
11 Y. Shi, Q. Hu, H. Araki, H. Suzuki, H. Gao, W. Yang, and T. Noda, "Long Si nanowires with millimeter-scale length by modified thermal evaporation from Si powder", Applied Physics A, Vol. 80, pp. 1733-1736. 2005. DOI: https://doi.org/10.1007/s00339-003-2469-x   DOI
12 G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, "Use of Highly-Ordered $TiO_2$ Nanotube Arrays in Dye-Sensitized Solar Cells", Nano Letters, Vol. 6, No. 2, pp. 215-218, 2006. DOI: https://doi.org/10.1021/nl052099j   DOI
13 J-M. Wu, H. C. Shih, and W-T. Wu, "Formation and photoluminescence of single-crystalline rutile $TiO_2$ nanowires synthesized by thermal evaporation", Nanotechnology, Vol. 17, pp. 105-109, 2006. DOI: https://doi.org/10.1088/0957-4484/17/1/017   DOI
14 J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, "Strain-Induced Self Organization of Metal-Insulator Domain in Single-Crystalline $VO_2$ nanobeams", Nano Letters, Vol. 6, No. 10, pp. 2313-2317, 2006. DOI: https://doi.org/10.1021/nl061831r   DOI
15 L. Hongwei, L. Junpeng, Z. Minrui, T. S. Hai, S. C. Haur, Z. Xinhai, and K. Lin, "Size effect on metal-insulator phase transition in individual vanadium dioxide nanowires", Optic Express, Vol. 22, No. 25, pp. 30748-30755, 2014. DOI: https://doi.org/10.1364/OE.22.030748   DOI
16 Y-S. Lai, J-L. Wang, Z-C. Liou, and C-H. Tu, "Tailoring of amorphous $SiO_x$ nanowires grown by rapid thermal annealing" Chemical Physics Letters, Vol. 453, pp. 97-100, 2008. DOI: https://doi.org/10.1016/j.cplett.2008.01.026   DOI