• Title/Summary/Keyword: SiC coating

Search Result 562, Processing Time 0.026 seconds

Properties of Polysiloxane Coated Borosilicate Lining Blocks

  • Song, Jeongho;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.525-529
    • /
    • 2017
  • To improve the thermal resistance of a porous borosilicate lining block, we prepared and applied polysiloxane-fumed silica-ethanol slurry on top of the block and fired the coating layer using a torch for 5 minutes at $800^{\circ}C$. We conducted magnified characterizations using a microscope and XRD analysis to observe phase transformations, and TGA-DTA analysis to determine the thermal resistance. Thermal characterizations showed improved heat resistance with relatively high polysiloxane content slurry. Cross-sectional optical microscope observation showed less melting near the surface and decreased pore formation area with higher polysiloxane content slurry. XRD analysis revealed that the block and coating layer were amorphous phases. TGA-DTA analysis showed an endothermic reaction at around $550^{\circ}C$ as the polysiloxane in the coating layer reacted to form SiOC. Therefore, coating polysiloxane on a borosilicate block contributes to preventing the melting of the block at temperatures above $800^{\circ}C$.

Characterizations on the Thermal Insulation of SiC Coated Carbon-Carbon Composites (탄화규소로 코팅된 탄소-탄소 복합재료의 단열 특성)

  • Seo, Hyoung-IL;Lim, Byung-Joo;Sihn, Ihn Cheol;Bae, Soobin;Lee, Hyung-Ik;Choi, Kyoon;Lee, Kee Sung
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.101-107
    • /
    • 2020
  • This study investigates the characterization on the thermal insulation properties of silicon carbide coating on the Cf-C composites. The silicon carbide coatings by chemical vapor deposition on the C/C composites are prepared to evaluate thermal resistance. Firstly, we perform the basic insulation test by thermal shock at 1350℃ in air on the C/C composite and SiC-coated C/C composite. We also performed the burner tests on the surface of the composites at high temperatures such as 1700 and 2000℃, and the weight change after burner tests are measured. The damages on the surface of C/C composite and SiC-coated composite are observed. As a result, the SiC coating is beneficial to protect the C/C composite from high temperature even though damages such as defoliation, crack and voids are observed during burner test at 2000℃.

Growth of SiC Nanorod Using Tetramethylsilane (테트라메틸사일렌을 이용한 탄화규소 나노로드의 성장)

  • Rho, Dae-Ho;Kim, Jae-Soo;Byun, Dong-Jin;Yang, Jae-Woong;Kim, Na-Ri
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.404-408
    • /
    • 2003
  • SiC nanorods have been grown on Si (100) substrate directly. Tetramethylsilane and Ni were used for SiC nanorod growth. After 3minute, SiC nanorod had grown by CVD. Growth regions ware divided by two regions with diameter. The First region consisted of thin SiC nanorods having below 10 nm diameter, but second region's diameter was 10∼50 nm. This appearance shows by reduction of growth rate. The effect of temperature and growth time was investigated by scanning electron microscopy. Growth temperature and time affected nanorod's diameter and morphology. With increasing growth time, nanorod's diameter increased because of the deactivation effect. But growth temperatures affected little. By TEM characterization, grown SiC nanorods consisted of the polycrystalline grain.

Plasma-Sprayed $Al_2O_3-SiO_2$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modulus. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing. These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma-sprayed coatings.

  • PDF

The Electric Characteristics of $Ba_{0.7}Sr_{0.3}TiO_{3}$ by Coating Numbers (코팅 횟수에 따른 $Ba_{0.7}Sr_{0.3}TiO_{3}$ 박막의 전기적 특성)

  • Hong, Kyung-Jin;Min, Yong-Gi;Min, Hyunc-Chul;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.42-45
    • /
    • 2001
  • The high permittivity are applied to DRAM and FRAM. (Ba,Sr)$TiO_3$ (EST) thin films were prepared by Sol-Gel method. BST solution was made and spin-coated on $Pt/SiO_2/Si$ substrate at 4000 [rpm] for 10 seconds in a time coating. Coated specimens were dried at $90[^{\circ}C]$ for 5 minutes. Coating process was repeated from 3 times to 5 times and then sintered at $750[^{\circ}C]$ for 30 minutes. Each specimen was analyzed structure and electrical characteristics. Thickness of BST ceramics thin films are about 2600-2800[$\AA$] in 3 times. Dielectric constant of thin films was little decreased at 1[KHz]~1[MHz]. Dielectric constant and loss to frequency were 250 and 0.02 in BST3. The property of leakage current was stable When the applied voltage was 0~3[V] Leakage current was $10^{9}\sim10^{11}$[A] at 0~3[V].

  • PDF

Plasma-Sprayed $Al_{2}O_{3}-SiO_{2}$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modules. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$ on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing, These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma- sprayed coatings.

  • PDF

Fabrication of PbZrO$_3$ thin films crystal by sol-gel processing (Sol-Gel법에 의한 PbZrO$_3$박막 결정의 제작)

  • 전기범;김원보;배세환
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2000
  • $PbZrO_3$precursor was prepared for the spin coating on the Pt/Ti/$SiO_2$/Si substrate. Two different heat treatment methods were used and the differencies were studied. One of the method is that the films were inserted into the furnace for 30 minutes and the other is that the films were annealed by rapid thermal annealing (RTA) for 1 minute at the same temperatures. We also examined the tendency of crystallization by annealing at the fixed temperature, $700^{\circ}C$ as a function of time, namely during 1, 10, 20, and 30 minitues, respectively. The optimum conditions for the crystallization of these films were at $550^{\circ}C$ during 30 min. and at $700^{\circ}C$ during 10 min. in muffle furnace and at $650^{\circ}C$ during 1 min in RTA furnace. The best condition for making good quality grains needs 30 min. at $700^{\circ}C$.

  • PDF

Optical Properties Analysis of SiNx Double Layer Anti Reflection Coating by PECVD

  • Gong, Dae-Yeong;Park, Seung-Man;Yi, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.149-149
    • /
    • 2010
  • The double-layer antireflection (DLAR) coatings have significant advantages over single-layer antireflection (SLAR) coatings. This is because they will be able to cover a broad range of the solar spectrum which would enhance the overall performance of solar cells. Moreover films deposited at high frequency are expected to show excellent and UV-stable passivation in the refractive index that we adopted. In this work, we present a novel DLAR coating using SiNx:H thin films with refractive indices 1.9 and 2.3 as the top and bottom layers. This approach is cost effective when compared to earlier DLAR coatings with two different materials. SiNx:H films were deposited by Plasma enhanced chemical vapor deposition (PECVD) technique using $SiH_4$, $NH_3$ and $N_2$ gases with flow rates 20~80sccm, 200sccm and 85 sccm respectively. The RF power, plasma frequency and substrate temperature for the deposition were 300W, 13.56 MHz and $450^{\circ}C$, respectively. The optimum thickness and refractive indices values for DLAR coatings were estimated theoretically using Macleod simulation software as 82.24 nm for 1.9 and 68.58 nm for 2.3 respectively. Solar cells were fabricated with SLAR and DLAR coatings of SiNx:H films and compared the cell efficacy. SiNx:H> films deposited at a substrate temperature of $450^{\circ}C$ and that at 300 W power showed best effective minority carrier lifetime around $50.8\;{\mu}s$. Average reflectance values of SLAR coatings with refractive indices 1.9, 2.05 and 2.3 were 10.1%, 9.66% and 9.33% respectively. In contrast, optimized DLAR coating showed a reflectance value as low as 8.98% in the wavelength range 300nm - 1100nm.

  • PDF

A study on the chemically vapor deposited TiC, TiN, and Ti(C, N) on $Si_3N_4$-TiC ceramic tools ($Si_3N_4$-TiC ceamic 공구에 화학증착된 TiC, TiN 및 Ti(C, N)에 관한 연구)

  • 김동원;김시범;이준근;천성순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1988.06a
    • /
    • pp.39-42
    • /
    • 1988
  • 요업체 절삭공구(ceramic tool)는 공구강이나 초경제품에 비해 고속 절삭 작업이 가능하며 생산성을 높일 수 있기 때문에 최근 주목을 받고 있다. 본 실험에서 모재(substrate)로 사용된 $Si_3N_4$-TiC ceramic은 요업체 공구중에서 파괴인성이 우수하며, 주철이나 초합금을 절삭할 때 우수한 성능을 나타낸다. 그러나 요업체 절삭공구중에서 경도가 낮은 편에 속하며, Fe,Mn,O와 $Si_3N_4$가 화학적 반응을 일으켜서, steel을 절삭할 때 상면 마모(crater wear)가 심하게 발생하기 때문에 우수한 성능을 나타내지 못하고 있는 실정이다. 따라서 이러한 단점을 보완하기 위해 공구의 표면에 보호피막(protective coating)을 입히는 것은 필수적이다. 본 연구에서는 반응변수들이 TiC 및 TiN 증착층의 증착속도, 미세구조, 화학적 조성 및 증착층과 substrate 사이의 interface를 조사하여 각 증착층의 최적증착조건을 규명하고자 한다.

  • PDF

Microstructures and Electrical Properties of Thick PZT Films with Thickness Variation Fabricated by Multi-coating Method (Multi-coating법으로 제조된 두꺼운 PZT막의 두께 변화에 따른 미세구조 및 전기적 특성)

  • Park, Jun-Sik;Jang, Yeon-Tae;Park, Hyo-Deok;Choe, Seung-Cheol;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.211-214
    • /
    • 2002
  • Properties of 52/48 PZT films with various thicknesses for piezoelectric micro-electro mechanical systems (MEMS) devices fabricated by multi-coating method on $Pt(3500{\AA})/Ti(400{\AA})/SiO_2(3000{\AA})/Si$(525$\mu\textrm{m}$) substrates were investigated. PZT films were deposited by spin-coating process at 3500 rpm for 30 sec, followed by pyrolysis at 45$0^{\circ}C$ for 10 min producing the thickness of about 120nm. These processes were repeated 4, 8, 12, 16 and 20 times in order to have various thicknesses, respectively. Finally, they were crystallized at $650^{\circ}C$ for 30 min. All thick PZT films showed dense and homogeneous surface microstructures. Thick PZT films showed crystalline structures of random orientations with increasing thickness. Dielectric constants of thick PZT films were increased with increasing film thickness and reached 800 at 100kHz for 2.3$\mu\textrm{m}$ thick PZT film. $P_r\; and\; E_c$ of 2.3$\mu\textrm{m}$ thick PZT films were about 20$\mu$C/$\textrm{cm}^2$ and 63kV/cm. Depth profile analysis by Auger Electron Spectroscopy (AES) of 4800 $\AA$ thick PZT film showed the formation of the perovskite phase on Pt layer by Pb diffusion behavior. It was considered that Pb-Pt intermediate layer promoted PZT (111) columnar structures.