• Title/Summary/Keyword: SiC Paper

Search Result 944, Processing Time 0.03 seconds

Direct Bonding of 3C-SiC Wafer for MEMS in Hash Environments (극한 환경 MEMS용 3C-SiC기판의 직접접합)

  • Chung, Yun-Sik;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.2020-2022
    • /
    • 2002
  • SiC direct bonding technology is very attractive for both SiCOI(SiC-on-insulator) electric devices and SiC-MEMS fileds because of its application possibility in harsh environements. This paper presents on pre-bonding according to HF pre-treatment conditions in SiC wafer direct bonding using PECVD oxide. The PECVD oxide was characterized by XPS and AFM, respectively. The characteristics of bonded sample were measured under different bonding conditions of HF concentration and applied pressure, respectively. The bonding strength was evaluated by tensile strength method. Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding (Min : 5.3 kgf/$cm^2{\sim}$ Max : 15.5 kgf/$cm^2$).

  • PDF

4H-SiC Curvature VDMOSFET with 3.3kV Breakdown Voltage (3.3kV 항복 전압을 갖는 4H-SiC Curvature VDMOSFET)

  • Kim, Tae-Hong;Jeong, Chung-Bu;Goh, Jin-Young;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.916-921
    • /
    • 2018
  • In this paper, we analyzed the power MOSFET devices for high voltage and high current operation. 4H-SiC was used instead of Si to improve the static characteristics of the device. Since 4H-SiC has a high critical electric field due to wide band gap, 4H-SiC is more advantageous than Si in high voltage and high current operation. In the conventional VDMOSFET structure using 4H-SiC, the breakdown voltage is limited due to the electric field crowding at the edge of the p-base region. Therefore, in this paper, we propose a Curvature VDMOSFET structure that improves the breakdown voltage and the static characteristics by reducing the electric field crowding by giving curvature to the edge of the p-base region. The static characteristics of conventional VDMOSFET and curvature VDMOSFET are compared and analyzed through TCAD simulation. The Curvature VDMOSFET has a breakdown voltage of 68.6% higher than that of the conventional structure without increasing on-resistance.

6.6 kW On-Vehicle Charger with a Hybrid Si IGBTs and SiC SBDs Based Booster Power Module

  • Han, Timothy Junghee;Preston, Jared;Ouwerkerk, David
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.584-591
    • /
    • 2013
  • In this paper, a hybrid booster power module with Si IGBT and Silicon Carbide (SiC) Schottky Barrier Diode (SBDs) is presented. The switching characteristics of the hybrid booster module are compared with commercial Silicon IGBT/Si PIN diode based modules. We applied the booster power module into a non-isolated on board vehicle charger with a simple buck-booster topology. The performances of the on-vehicle charger are analyzed and measured with different power modules. The test data is measured in the same system, at the same points of operation, using the conventional Si and hybrid Si/SiC power modules. The measured power conversion efficiency of the proposed on-vehicle charger is 96.4 % with the SiC SBD based hybrid booster module. The conversion efficiency gain of 1.4 % is realizable by replacing the Si-based booster module with the Si IGBT/SiC SBD hybrid boost module in the 6.6 kW on-vehicle chargers.

Microstructure and Mechanical Properties of Cr-Mo-Si-C-N Coatings Deposited by a Hybrid Coating System (하이브리드 코팅시스템에 의해 제조된 Cr-Mo-Si-C-N 박막의 미세구조 및 기계적 특성연구)

  • Yun, Ji-Hwan;Ahn, Sung-Kyu;Kim, Kwang-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.6
    • /
    • pp.279-282
    • /
    • 2007
  • Cr-Mo-Si-C-N coatings were deposited on steel and Si wafer by a hybrid system of AIP and sputtering techniques using Cr, Mo and Si target in $Ar/N_2/CH_4$ gaseous mixture. Instrumental analyses of XRD and XPS revealed that the Cr-Mo-Si-C-N coatings must be a composite consisting of fine(Cr, Mo and Si)(C and N) crystallites and amorphous $Si_3N_4$ and SiC. The hardness value of Cr-Mo-Si-C-N coatings significantly increased from 41 GPa of Cr-Mo-C-N coatings to about 53 GPa with Si content of 9.3 at.% due to the refinement of (Cr, Mo and Si)(C and N) crystallites and the composite microstructure characteristics. A systematic investigation of the microstructures and mechanical properties of Cr-Mo-Si-C-N coatings prepared with various Si contents is reported in this paper.

Raman Scattering Characteristics of Polycrystalline 3C-SiC Thin Films deposited on AlN Buffer Layer (AlN 버퍼층위에 증착된 다결정 3C-SiC 박막의 라만 산란 특성)

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.493-498
    • /
    • 2008
  • This Paper describes the Raman scattering characteristics of polycrystalline (Poly) 3C-SiC thin films, in which they were deposited on AlN buffer layer by APCVD using hexamethyldisilane (MHDS) and carrier gases (Ar+$H_2$). When the Raman spectra of SiC films deposited on the AlN layer of before and after annealing were worked according to growth temperature, D and G bands of graphite were measured. It can be explained that poly 3C-SiC films admixe with nanoparticle graphite and its C/Si rate is higher than ($C/Si\;{\approx}\;3$) that of the conventional SiC, which has no D and G bands related to graphite. From the Raman shifts of 3C-SiC films deposited at $1180^{\circ}C$ on the AlN layer of after annealing, the biaxial stress of poly 3C-SiC films was obtained as 896 MPa.

Effect of Surface Treatments of Polycrystalline 3C-SiC Thin Films on Ohmic Contact for Extreme Environment MEMS Applications (극한 환경 MEMS용 옴익 접촉을 위한 다결정 3C-SiC 박막의 표면 처리 효과)

  • Chung, Gwiy-Sang;Ohn, Chang-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.234-239
    • /
    • 2007
  • This paper describes the TiW ohmic contact characteristics under the surface treatment of the polycrystalline 3C-SiC thin film grown on $SiO_2/Si(100)$ wafers by APCVD. The poly 3C-SiC surface was polished by using CMP(chemical mechanical polishing) process and then oxidized by wet-oxidation process, and finally removed SiC oxide layers. A TiW thin film as a metalization process was deposited on the surface treated poly 3C-SiC layer and was annealed through a RTA(rapid thermal annealing) process. TiW/poly 3C-SiC was investigated to get mechanical, physical, and electrical characteristics using SEM, XRD, XPS, AFM, optical microscope, I-V characteristic, and four-point probe, respectively. Contact resistivity of the surface treated 3C-SiC was measured as the lowest $1.2{\times}10^{-5}{\Omega}cm^2$ at $900^{\circ}C$ for 45 sec. Therefore, the surface treatments of poly 3C-SiC are necessary to get better contact resistance for extreme environment MEMS applications.

Design fabrication and characteristics of 3C-SiC micro heaters for high temperature, high powers (고온, 고전압용 SiC 마이크로 히터 설계, 제작 및 특성)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.113-113
    • /
    • 2009
  • This paper describes the characteristics of a poly 3C-SiC micro heater which was fabricated on $AlN(0.1{\mu}m)/3C-SiC(1.0{\mu}m)$ suspended membranes by surface micro- machining technology. The 3C-SiC and AlN thin films which have wide energy bandgap and very low lattice mismatch were used sensors for high temperature and voltage environments. The 3C-SiC thin film was used as micro heaters and temperature sensor materials simultaneously. The implemented 3C-SiC RTD (resistance of temperature detector) and the power consumption of micro heaters were measured and calculated. The TCR (thermal coefficient of the resistance) of 3C-SiC RTD is about -5200 $ppm/^{\circ}C$ within a temperature range from $25^{\circ}C$ to $50^{\circ}C$ and -1040 $ppm/^{\circ}C$ at $500^{\circ}C$. The micro heater generates the heat about $500^{\circ}C$ at 10.3 mW. Moreover, durability of 3C-SiC micro heaters in high voltages is better than pt micro heaters. A thermal distribution measured and simulated by IR thermovision and COMSOL is uniform on the membrane surface.

  • PDF

Heteroepitaxial Growth of Single 3C-SiC Thin Films on Si (100) Substrates Using a Single-Source Precursor of Hexamethyldisilane by APCVD

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.533-537
    • /
    • 2007
  • This paper describes the heteroepitaxial growth of single-crystalline 3C-SiC (cubic silicon carbide) thin films on Si (100) wafers by atmospheric pressure chemical vapor deposition (APCVD) at 1350 oC for micro/nanoelectromechanical system (M/NEMS) applications, in which hexamethyldisilane (HMDS, Si2(CH3)6) was used as a safe organosilane single-source precursor. The HMDS flow rate was 0.5 sccm and the H2 carrier gas flow rate was 2.5 slm. The HMDS flow rate was important in obtaing a mirror-like crystalline surface. The growth rate of the 3C-SiC film in this work was 4.3 μm/h. A 3C-SiC epitaxial film grown on the Si (100) substrate was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Raman scattering, respectively. These results show that the main chemical components of the grown film were single-crystalline 3C-SiC layers. The 3C-SiC film had a very good crystal quality without twins, defects or dislocations, and a very low residual stress.

Fabrication of polycrystalline 3C-SiC diode for harsh environment micro chemical sensors and their characteristics (극한 환경 마이크로 화학센서용 다결정 3C-SiC 다이오드 제작과 그 특성)

  • Shim, Jae-Cheol;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.195-196
    • /
    • 2009
  • This paper describes the fabrication and characteristics of polycrystalline 3C-SiC thin film diodes for extreme environment applications, in which the this thin film was deposited onto oxidized Si wafers by APCVD using HMDS In this work, the optimized growth temperature and HMDS flow rate were $1,100^{\circ}C$ and 8sccm, respectively. A Schottky diode with a Au, Al/poly 3C-SiC/$SiO_2$/Si(n-type) structure was fabricated and its threshold voltage ($V_d$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_D$) values were measured as 0.84V, over 140V, 61nm, and $2.7{\times}10^{19}cm^2$, respectively. To produce good ohmic contact, Al/3C-SiC were annealed at 300, 400, and $500^{\circ}C$ for 30min under a vacuum of $5.0{\times}10^{-6}$Torr. The obtained p-n junction diode fabricated by poly 3C-SiC had similar characteristics to a single 3C-SiC p-n junction diode.

  • PDF

Characteristics of Pd/polycrystalline 3C-SiC Schottky diodes for high temperature gas sensors (고온 가스센서용 Pd-다결정 3C-SiC 쇼트키 다이오드의 특성)

  • Ahn, Jeong-Hak;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.275-275
    • /
    • 2008
  • This paper describe the fabrication of a Pd/polycrystalline 3C-SiC schottky diode and its characteristics, in which the polycrystalline 3C-SiC layer and Pd Schottky contact were deposited by using APCVD and sputter, respectively. Crystalline quality, uniformity, and preferred orientations of the Pd thin film were evaluated by SEM and XRD, respectively. Pd/poly 3C-SiC Schottky diodes were fabricated and characterized by I-V and C-V measurements. Its electric current density Js and barrier height voltage were measured as $2\times10^{-3}$ A/$cm^2$ and 0.58 eV, respectively. These devices were operated until about $400^{\circ}C$. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature chemical sensor applications.

  • PDF