• Title/Summary/Keyword: SiC C3M

Search Result 1,713, Processing Time 0.045 seconds

Fabrication of micro heaters with uniform-temperature area on poly 3C-SiC membrane and its characteristics (다결정 3C-SiC 멤브레인 위에 균일한 온도분포를 갖는 마이크로 히터의 제작과 그 특성)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.349-352
    • /
    • 2009
  • This paper describes the fabrication and characteristics of micro heaters built on AlN($0.1{\mu}m$)/3C-SiC($1{\mu}m$) suspended membranes by surface micromachining technology. In this work, 3C-SiC and AlN films are used for high temperature environments. Pt thin film was used as micro heaters and temperature sensor materials. The resistance of temperature sensor and the power consumption of micro heaters were measured and calculated. The heater is designed for operating temperature up to about $800^{\circ}C$ and can be operated at about $500^{\circ}C$ with a power of 312 mW. The thermal coefficient of the resistance(TCR) of fabricated Pt resistance of temperature detector(RTD)'s is 3174.64 ppm/$^{\circ}C$. A thermal distribution measured by IR thermovision is uniform on the membrane surface.

Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries (리튬이온배터리 Graphite/Silicon/Carbon 복합 음극소재의 전기화학적 성능)

  • Jo, Yoon Ji;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.320-326
    • /
    • 2018
  • In this study, Graphite/Silicon/Carbon (G/Si/C) composites were synthesized to improve the electrochemical properties of Graphite as an anode material of lithium ion battery. The prepared G/Si/C composites were analyzed by XRD, TGA and SEM. Also the electrochemical performances of G/Si/C composites as the anode were performed by constant current charge/discharge, rate performance, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1 vol%). Lithium ion battery using G/Si/C electrode showed better characteristics than graphite electrode. It was confirmed that as the silicon content increased, the capacity increased but the capacity retention ratio decreased. Also, it was shown that both the capacity and the rate performances were improved when using the Silicon (${\leq}25{\mu}m$). It is found that in the case of 10 wt% of Silicon (${\leq}25{\mu}m$), G/Si/C composites have the initial discharge capacity of 495 mAh/g, the capacity retention ratio of 89% and the retention rate capability of 80% in 2 C/0.1 C.

Characteristics of corrugated polycrystalline 3C-SiC resonators (주름진 다결정 3C-SiC 공진기의 특성)

  • Nhan, Duong The;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.251-251
    • /
    • 2008
  • In this work, appropriate corrugated structure is suggested to increase resonant frequency of resonators. Micro beam resonators based on polycrystalline 3C-SiC films which have a two-side corrugation along the length of beams were simulated by finite element method and compared to a same - size flat rectangular. With the dimension of $36\times12\times0.5{\mu}m^3$, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, with this size only corrugation width of $6{\mu}m$ and depth of $0.4{\mu}m$, the corrugated cantilever reaches the resonant frequency at 1.252 MHz, and is 68% larger than that of flat type.

  • PDF

Design of polycrystalline 3C-SiC micro beam resonators with corrugation (주름진 다결정 3C-SiC 마이크로-빔 공진기의 설계)

  • Nguyen-Duong, The-Nhan;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.74-75
    • /
    • 2008
  • This work has suggested corrugation beam as a new structure for mechanical resonators. Micro beam resonators based on 3C-SiC films which have two side corrugations along the length of beams were simulated by finite-element modeling and compared to a flat rectangular beam with the same dimension. With the dimension of $36\times12\times0.5{\mu}m^3$, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, this frequency reaches 1.252 MHz with the corrugated cantilever which has the same dimension with flat type but corrugation width of $6{\mu}m$ and depth of $0.4{\mu}m$. It is expected that mechanical resonators with corrugations will be very helpful for the research of sensing devices with high-resolution, high-performance oscillators and filters in wireless communications as well as measurement in basic physics.

  • PDF

Design of Polycrystalline 3C-SiC Micro Beam Resonators with Corrugation

  • Chung, Gwiy-Sang;Nhan, Nguyen Duong The;Thach, Phan Duy
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.193-197
    • /
    • 2008
  • On the purpose of increasing resonant frequency without sacrificing quality factor as well as much decreasing dimensions, corrugated micro beam resonator based on polycrystalline 3C-SiC films is the applicable solution. In this work, appropriate corrugated structure is suggested to increase resonant frequency of resonators. Micro beam resonators based on 3C-SiC films which have a two-side corrugation along the length of beams were simulated by finite element method and compared to a same-size flat rectangular. With the dimension of 36x12x0.5 ${\mu}m^{3}$, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, with this size but corrugation width of 6 ${\mu}m$ and depth of 0.4 ${\mu}m$, the corrugated cantilever reaches the resonant frequency at 1.252 MHz.

Heteroepitaxial Growth of Single 3C-SiC Thin Films on Si (100) Substrates Using a Single-Source Precursor of Hexamethyldisilane by APCVD

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.533-537
    • /
    • 2007
  • This paper describes the heteroepitaxial growth of single-crystalline 3C-SiC (cubic silicon carbide) thin films on Si (100) wafers by atmospheric pressure chemical vapor deposition (APCVD) at 1350 oC for micro/nanoelectromechanical system (M/NEMS) applications, in which hexamethyldisilane (HMDS, Si2(CH3)6) was used as a safe organosilane single-source precursor. The HMDS flow rate was 0.5 sccm and the H2 carrier gas flow rate was 2.5 slm. The HMDS flow rate was important in obtaing a mirror-like crystalline surface. The growth rate of the 3C-SiC film in this work was 4.3 μm/h. A 3C-SiC epitaxial film grown on the Si (100) substrate was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and Raman scattering, respectively. These results show that the main chemical components of the grown film were single-crystalline 3C-SiC layers. The 3C-SiC film had a very good crystal quality without twins, defects or dislocations, and a very low residual stress.

Etching Characteristics of Polyctystalline 3C-SiC Thin Films by Magnetron Reactive Ion Etching (마그네트론 RIE를 이용한 다결정 3C-SiC의 식각 특성)

  • Ohn, Chang-Min;Kim, Gwiy-Yeal;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.331-332
    • /
    • 2007
  • Surface micromachined SiC devices have readily been fabricated from the polycrystalline (poly) 3C-SiC thin film which has an advantage of being deposited onto $SiO_2$ or $Si_3N_4$ as a sacrificial layer. Therefore, in this work, magnetron reactive ion etching process which can stably etch poly 3C-SiC thin films grown on $SiO_2$/Si substrate at a lower energy (70 W) with $CHF_3$ based gas mixtures has been studied. We have investigated the etching properties of the poly 3C-SiC thin film using PR/Al mask, according to $O_2$ flow rate, pressure, RF power, and electrode gap. The etched RMS (root mean square), etch rate, and etch profile of the poly 3C-SiC thin films were analyzed by SEM, AFM, and $\alpha$-step.

  • PDF

Properties of Al2O3-SiCw Composites Fabricated by Three Preparation Methods (제조방법에 따른 Al2O3-SiCw 복합체의 특성)

  • Lee, Dae-Yeop;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • $Al_2O_3$-SiC composites reinforced with SiC whisker ($SiC_w$) were fabricated using three different methods. In the first, $Al_2O_3-SiC_w$ starting materials were used. In the second, $Al_2O_3-SiC_w$-SiC particles ($SiC_p$) were used, which was intended to enhance the mechanical properties by $SiC_p$ reinforcement. In the third method, reaction-sintering was used with mullite-Al-C-$SiC_w$ starting materials. After hot-pressing at $1750^{\circ}C$ and 30 MPa for 1 h, the composites fabricated using $Al_2O_3-SiC_w$ and $Al_2O_3-SiC_w-SiC_p$ showed strong mechanical properties, by which the effects of reinforcement by $SiC_w$ and $SiC_p$ were confirmed. On the other hand, the mechanical properties of the composite fabricated by reaction-sintering were found to be inferior to those of the other $Al_2O_3$-SiC composites owing to its relatively lower density and the presence of ${\gamma}-Al_2O_3$ and ${\gamma}-Al_{2.67}O_4$. The greatest hardness and $K_{1C}$ were 20.37 GPa for the composite fabricated using $Al_2O_3-SiC_w$, and $4.9MPa{\cdot}m^{1/2}$ using $Al_2O_3-SiC_w-SiC_p$, respectively, which were much improved over those from the monolithic $Al_2O_3$.

Properties of Liquid Phase Sintered SiC Materials Containing $Al_2O_3$ and $Y_2O_3$ Particles ($Al_2O_3$$Y_2O_3$ 입자를 함유한 액상소결 SiC 재료의 특성)

  • Lee, Sang-Pill;Lee, Moon-Hee;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.59-64
    • /
    • 2008
  • The mechanical properties of liquid phase sintered (LPS) SiC materials, with the addition of oxide powder, were investigated, in conjunction with a detailed analysis of their microstructures. LPS-SiC materials were fabricated at a temperature of 1820 $^{\circ}C$ under an argon atmosphere, using three different starting sizes of SiC particles. The sintering additive for the fabrication of the LPS-SiC materials was an $Al_2O_3-Y_2O_3$ mixture with a constant composition ratio ($Al_2O_3/Y_2O_3$: 1.5). The particle sizes of the commercial SiC powderswere 30 nm, 0.3 $\mu$m, and 3.0 $\mu$m. The flexural strength of the LPS-SiC materials was also examined at elevated temperatures. A decrease in the starting size of the SiC particles led to an increase in the flexural strength of the LPS-SiC materials, accompanying a highly dense morphology with the creation of a secondary phase. Such a secondary phase was identified as $Y_3Al_2(AlO_4)2$. The flexural strength of the LPS-SiC materials greatly decreased with an increase in the test temperature, due to the creation of a large amount of pores.

Design and Fabrication of microheaters based oil polycrystalline 3C-SiC with large uniform-temperature area for high temperature (다결정 3C-SiC 기반으로 한 넓은 범위에서 균일한 온도 분포를 갖는 초고온용 마이크로 히터 설계 및 제작)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.214-215
    • /
    • 2009
  • This paper presents the fabrication and characteristics of microheaters, built on AlN(0.1 um)/3C-SiC(1 um) suspended membranes. Pt was used as microheater and temperature sensor materials. The results of simulated are shown that AlN/3C-SiC membrane has more large uniform-temperature area than $SiO_2$/3C-SiC membrane. Resistance of temperature sensor and power consumption of microheater were measured and calculated. Pt microheater generates the heat of about $550^{\circ}C$ at 340 mW and TCR of Pt temperature sensor is about 3188 ppm/$^{\circ}C$.

  • PDF