• 제목/요약/키워드: Si-adhesive

검색결과 147건 처리시간 0.02초

Si-adhesive 층의 불량에 따른 정전척 온도분포 (Effect of the Si-adhesive layer defects on the temperature distribution of electrostatic chuck)

  • 이기석
    • 반도체디스플레이기술학회지
    • /
    • 제11권2호
    • /
    • pp.71-74
    • /
    • 2012
  • Uniformity of the wafer temperature is one of the important factors in etching process. Plasma, chucking force, backside helium pressure and the surface temperature of ESC(electrostatic chuck) affect the wafer temperature. ESC consists of several layers of structure. Each layer has own thermal resistance and the Si-adhesive layer has highest thermal resistance among them. In this work, the temperature distribution of ESC was analyzed by 3-D FEM with various defects and the thickness deviation of the Si-adhesive layer. The result with Si-adhesive layer with the low center thickness deviation shows modified temperature distribution of ESC surface.

폴리머를 이용한 CIS(CMOS Image Sensor) 디바이스용 웨이퍼 레벨 접합의 warpage와 신뢰성 (A Reliability and warpage of wafer level bonding for CIS device using polymer)

  • 박재현;구영모;김은경;김구성
    • 마이크로전자및패키징학회지
    • /
    • 제16권1호
    • /
    • pp.27-31
    • /
    • 2009
  • 본 논문에서는 웨이퍼 레벨 기술을 이용한 CIS용 폴리머 접합 기술을 연구하고 접합 후의 warpage 분석과 개별 패키지의 신뢰성 테스트를 수행하였다. 균일한 접합 높이를 유지하기 위하여 glass 웨이퍼 상에 dam을 형성하고 접합용 폴리머 층을 patterning하여 Si과 glass 웨이퍼의 접합 테스트를 수행하였다. Si 웨이퍼의 접합온도, 접합 압력 그리고 접합 층이 낮을수록 warpage 결과가 감소하였으며 접합시간과 승온 시간이 짧을수록 warpage 결과가 증가하는 것을 확인하였다. 접합 된 웨이퍼를 dicing 하여 각 개별 칩 단위로 TC, HTC, Humidity soak의 신뢰성 테스트를 수행하였으며 warpage 결과가 패키지의 신뢰성 결과에 미치는 영향은 미비한 것으로 확인되었다.

  • PDF

Negative PR의 기밀 특성 (Hermetic Characteristics of Negative PR)

  • 최의정;선용빈
    • 반도체디스플레이기술학회지
    • /
    • 제5권2호
    • /
    • pp.33-36
    • /
    • 2006
  • Many issues arose to use the Pb-free solder as adhesive materials in MEMS ICs and packaging. Then this study for easy and simple sealing method using adhesive materials was carried out to maintain hermetic characteristic in MEMS Package. In this study, Hermetic characteristic using negative PR (XP SU-8 3050 NO-2) as adhesive at the interface of Si test coupon/glass substrate and Si test coupon/LTCC substrate was examined. For experiment, the dispenser pressure was 4 MPa and the $200\;{\mu}m{\Phi}$ syringe nozzle was used. 3.0 mm/sec as speed of dispensing and 0.13 mm as the gap between Si test coupon and nozzle was selected to machine condition. 1 min at $65^{\circ}C$ and 15 min at $95^{\circ}C$ as Soft bake, $200\;mj/cm^2$ expose in 365 nm wavelength as UV expose, 1 min at $65^{\circ}C$ and 6 min at $95^{\circ}C$ as Post expose bake, 60 min at $150^{\circ}C$ as hard bake were selected to activation condition of negative PR. Hermetic sealing was achieved at the Si test coupon/ glass substrate and Si test coupon/LTCC substrate. The leak rate of Si test coupon/glass substrate was $5.9{\times}10^{-8}mbar-l/sec$, and there was no effect by adhesive method. The leak rate of Si test coupon/LTCC substrate was $4.9{\times}10^{-8}mbar-l/sec$, and there was no effect by dispensing cycle. Better leak rate value could be achieved to use modified substrate which prevent PR flow, to increase UV expose energy and to use system that controls gap automatically with vision.

  • PDF

상온 경화형 실리콘 접착제의 내엔진 오일성에 관한 연구 (A Study on the Engine Oil Resistant Behaviors of Room Temperature Vulcanizing Silicone Adhesives)

  • 박수진;김범용;김종학;주혁종;김준형
    • Elastomers and Composites
    • /
    • 제40권3호
    • /
    • pp.196-203
    • /
    • 2005
  • 본 논문에서는 상온 경화형 실리콘 접착제의 표면 특성, 열안정성, 접착력, 그리고 모폴로지 분석을 통하여 접착제의 내엔진 오일성 평가 및 고장분석을 시행하였다. 실험 결과, 엔진오일의 침투는 접착제 시편의 표면에서 중앙으로 진행되었으며, 열화시간에 따라 접착제 시편중에 오일의 함량은 점차 증가하였으며, 접착제의 Si-O-Si 결합은 점차 분해되었다. TGA 실험결과로부터 열분해는 접착제 시편의 표면과 밑 부분에서 발생함을 알 수 있었다. 상온 경화형 실리콘 접착제의 내엔진 오일 시험 후 접착제 시편의 인장강도, 신율, 접착력 등의 물성이 모두 현저하게 감소하였으며, 이는 엔진오일의 흡수와 열화에 의해 초기 접착제 성질을 많이 상실한 것으로 판단된다. 또한, SEM 분석을 통하여 접착제 시편의 파괴모드는 열화시간이 증가함에 따라 응집 파괴에서 계면 파괴로 나타남을 확인하였다.

급속응고법으로 제조한 과공정 Al-Si합금분말 압출재의 마멸특성 (Wear Characteristics of the Extruded Bars of Hypereutectic Al-Si Alloy Powders produced by Rapid Solidification Process)

  • 안영남;조규섭;나형용
    • 한국주조공학회지
    • /
    • 제14권5호
    • /
    • pp.447-454
    • /
    • 1994
  • Wear resistance and wear mechanism of hypereutectic Al-($15{\sim}40$)wt%Si alloys were investigated. Primary Si particles under $20{\mu}m$ size were formed in hypereutectic Al-Si alloy powders due to rapid solidification. But the Si particles of extruded bars were finely distributed in smaller size than that of atomized powders. The wear mechanism of hypereutectic Al-Si alloys was divided into three types of wear phenomena, which were abrasive wear, delamination wear and severe adhesive wear according to sliding speed and load. At low sliding speed and load, wear mechanism was abrasive wear, so Al-15wt%Si alloy showed the best wear resistance. At high sliding speed and load, wear mechanism was adhesive wear, and Al-40wt%Si alloy showed the best wear resistance.

  • PDF

Al/PC 접합재의 접착강도특성에 미치는 표면처리의 영향 (Effect of Surface Treatment on Adhesive Strength Properties of Al/PC Adhesive Joints)

  • 서도원;윤호철;유성철;임재규
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.840-847
    • /
    • 2003
  • The bonding of adhesive joints of adhesive joints is influenced by the surface roughness of the joining Parts. However, the magnitude of the influence has not yet been clarified because of the complexity of the phenomena. In this study, it is shown that surface treatment affects adhesive strength and durability of alumina/polycarbonate single-lap .joints, and leading speed affects tensile-shea strength of adhesive Joints. To evaluate effect of surface treatments on the adhesive strength, several surface treatment methods are used, that is, cleaning, grinding, SiC polishing and sand blasting. It is shown that an optimum value of the surface roughness exists with respect to the tensile-shea strength of adhesive joints. The adhesive strength shows linear relationship with the surface roughness and loading speed. And the mechanical removal of disturbing films of lubricants, impurities and oxides make adhesive strength increase significantly.

Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

  • Ishiyama, Chiemi
    • 비파괴검사학회지
    • /
    • 제32권2호
    • /
    • pp.122-130
    • /
    • 2012
  • Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and $75\;{\mu}m$) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter.

나노스케일과 마이크로스케일 사이에서 Mica 의 점착 및 마찰 거동 (Adhesive and frictional behaviors of Mica between nanoscale and microscale)

  • 최덕현;황운봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1151-1154
    • /
    • 2005
  • The size effects for adhesive and frictional characteristics were studied. The specimen was Mica and the AFM tips were SiO2. The radii of SiO2 tip were 280, 380, 930, and 2230 nm on which tribological tests had never been performed. It was found that the adhesive forces and the frictional coefficients increased non-linearly with tip radius. Compared with previous studies at nanoscale and microscale, the results showed behaviors bridging each previous result. It could be said that these results were clues to explain the material behaviors between nanoscale and microscale both in adhesion and friction.

  • PDF