• 제목/요약/키워드: Si-Alloy

검색결과 1,255건 처리시간 0.028초

가스분무 공정에 의한 과공정 Al-Si 합금 분말 압출재의 마모 거동 (Wear Behaviors of Gas Atomized and Extruded Hypereutectic Al-Si Alloys)

  • 진형호;남기영;김용진;박용호;윤석영
    • 한국분말재료학회지
    • /
    • 제13권4호
    • /
    • pp.250-255
    • /
    • 2006
  • Wear behaviors of gas atomized and extruded Al-Si alloys were investigated using the dry sliding wear apparatus. The wear tests were conducted on Al-Si alloy discs against cast iron pins and vice versa at constant load of 10N with different sliding speed of 0.1, 0.3, 0.5m/s. In the case of Al-Si alloy discs slid against the cast iron pins, the wear rate slightly increased with increasing the sliding speed due to the abrasive wear occurred between Al-Si alloy discs and cast iron pins. Conversely, in the case of cast iron discs against Al-Si alloy pins, the wear rate decreased with increasing the sliding speed up to 0.3m/s. However, the wear rate increased with increasing the sliding speed from 0.3m/s to 0.5m/s. It could be due to adhesive wear behavior and abrasive wear behavior_between cast iron discs and Al-Si alloy pins.

Al 1050 합금에 과공정 Al-Si 합금의 레이저 클래딩에서 평균출력의 영향에 대한 연구 (Effects of Average Power on Laser Cladding of Hypereutectic Al-Si Alloy on Al 1050 Alloy)

  • 이형근
    • Journal of Welding and Joining
    • /
    • 제29권2호
    • /
    • pp.88-93
    • /
    • 2011
  • This study produced hypereutectic Al-Si clad layer on 1050 Al alloy by a novel laser cladding method. Pure Si powder was mixed with organic binder to make fluid paste which could be screen-printed on the 1050 Al alloy plate. Pulsed Nd:YAG laser was irradiated on the Si paste layer to melt and alloy with Al substrate. Different laser power of 99 W, 179 W and 261 W, was used to see the difference of the microstructure, composition and hardness of the clad layers. When laser power of 179 W was used, the clad layer had overall Si content of 38wt% and composed of fine primary Si particles and fine eutectic phase. At laser power of 261 W, the clad layer had overall Si content of 24wt% and composed of mainly fine eutectic phase. Vickers hardness of HV176.7 and HV150.3 on the clad layer was obtained at laser power of 179 W and 261 W, respectively.

Al-Mg-Si 단조품의 시효 모델 (Aging model for Al-Mg-Si forged part)

  • 권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.307-310
    • /
    • 2005
  • Ageing behavior of the Al-Mg-Si alloy was modeled for the use of optimization of Al forging product. Typical precipitates of Al-Mg-Si alloy are a wide variety of metastable phases (e.g. GP zones, $\beta',\beta'$). These rod shaped particles take a role to hinder the dislocation movement. The precipitation sequence in Al-Mg-Si alloys is quite complex and the strength of precipitate particles differs with the ageing condition. In the present study, the ageing behavior of Al-Mg-Si alloy was investigated by using an industrial grade Al 6061 alloy forged product, which was a perform for an Al impeller for turbo charger. The precipitate hardening models by Esmaeili's approach were used for the analysis of ageing behavior.

  • PDF

Mg-Al-Si 합금에서 Mg2Si의 개량화 및 기계적 특성에 미치는 Bi의 영향 (Effects of Bi on Mg2Si Modification and Mechanical Properties of Mg-Al-Si Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제24권2호
    • /
    • pp.82-86
    • /
    • 2011
  • The influences of Bi addition on morphological modification of $Mg_2Si$ phase and mechanical properties were investigated in Mg-7%Al-0.5%Si casting alloy. It was found that the addition of 0.3%Bi changed the $Mg_2Si$ morphology from coarse Chinese script type to polygonal type, and significantly decreased the size to ~5 ${\mu}m$ or less with the increase of number density. The modification of $Mg_2Si$ phase by the addition of Bi resulted in the improvement of tensile properties of the Mg-Al-Si alloy at RT and $175^{\circ}C$.

아공정 Al-Si합금에 있어서 공정 Si크기에 미치는 전자기진동의 영향 (The Effect of Electromagnetic Vibration on Eutectic Si Size in Hypoeutectic Al-Si alloys)

  • 최정평;윤의박;남태운
    • 한국주조공학회지
    • /
    • 제24권2호
    • /
    • pp.79-84
    • /
    • 2004
  • In this study, the electromagnetic vibration is adopted for modifying eutectic Si phase and reducing its size. The higher the current density and frequency of electromagnetic vibration(EMV), the finer the size of eutectic Si phase. The tensile strength and elongation of EMVed alloy were highly improved. Measured twin probability of EMVed alloy at a frequency of 1000 Hz was approximately six times as high as that of the normal alloy. The mechanism for the increase in twin density due to EMV during solidification could be supposed from the fact that the preferential growth along <112> in silicon was suppressed by preventing Si atom from attaching to the growing interface of Si phase and by changing the solid/liquid interfacial energy of silicon. According to the result of UTS test, because of modification of eutectic Si, UTS and elongation are highly increased.

Al-Zn-Mg-Cu-Si 소결합금의 미세조직과 기계적 특성에 미치는 열처리의 영향 (Effect of Heat Treatment on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu-Si Sintered Alloys with and Without High-energy Ball Milling)

  • 이준호;박성현;이상화;손승배;이석재;정재길
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.470-477
    • /
    • 2023
  • The effects of annealing on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500℃ causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 ㎛ and from 2.9 to 6.3 ㎛, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.

고에너지 볼밀링으로 제조된 나노구조 Fe-20 wt.%Si 합금 분말의 자성 특성에 미치는 결정립 크기의 영향 (Effect of Grain Size on Nanostructured Fe-20 wt.%Si Alloy Powders Produced by High-energy ball milling)

  • 김세훈;이영중;이백희;이규환;김영도
    • 한국분말재료학회지
    • /
    • 제12권5호
    • /
    • pp.362-368
    • /
    • 2005
  • The structural and magnetic properties of nanostructued Fe-20 ;wt.%Si alloy powders were investigated. Commercial Fe-20 wt.%Si alloy powders (Hoeganaes Co., USA) with 99.9% purities were used to fabricate the nanostructure Fe-Si alloy powders through a high-energy ball milling process. The alloy powders were fabricated at 400 rpm for 50 h, resulting in an average grain size of 16 nm. The nanostructured powder was characterized by fcc $Fe_{3}Si$ and hcp $Fe_{5}Si_3$ phases and exhibited a minimum coercivity of approximately 50 Oe.

분무 주조 과공정 Al-Si 계 합금의 응력이완 및 Creep 천이 거동 (Load Relaxation and Creep Transition Behavior of a Spray Casted Hypereutectic Al-Si Alloy)

  • 김민수;방원규;박우진;장영원
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.502-508
    • /
    • 2005
  • Hypereutectic Al-Si alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, high thermal stability, low thermal expansion coefficient and good creep resistance. Spray casting of hypereutectic Al-Si alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test. High temperature deformation behavior of the hypereutectic Al-Si alloy has been investigated by applying the internal variable theory proposed by Chang et al. Especially, the creep resistance of spray casted hypereutectic Al-Si alloy can be enhanced considerably by the accumulation of prestrain.

Sr과 TiB 첨가에 따른 다이캐스팅용 Al-Si 합금의 미세조직과 공정온도의 변화 (Influence of Sr and TiB on the Microstructure and Eutectic Temperature of Al-12Si Die-Cast Alloys)

  • 최용락;김선화;김동현;윤상일;김기선
    • 한국재료학회지
    • /
    • 제27권10호
    • /
    • pp.544-551
    • /
    • 2017
  • In order to develop a new commercial Al-12%Si casting alloy with improved physical properties, we investigated the effect of adding Sr and TiB to the alloy. Al-12%Si alloys were prepared by die casting at $660^{\circ}C$. The eutectic temperature of the Sr-modified Al-12%Si alloy decreased to $9^{\circ}C$ and the mushy zone region increased. The shape of the Si phase changed from coarse acicula to fine fiber with the addition of Sr. The addition of TiB in the Al-12%Si alloy reduced the size of the primary ${\alpha}$-Al and eutectic Si phases. When Sr and TiB were added together, it worked more effectively in refinement and modification. The density of twins in the Si phase-doped Sr increased and the width of the twins was refined to 5 nm. These results are related to the impurity induced twinning(IIT) growth.

금형 예열온도에 따른 Al-Cu-Si 3원계 공정합금의 미세조직 변화 (Changes on the Microstructure of an Al-Cu-Si Ternary Eutectic Alloy with Different Mold Preheating Temperatures)

  • 오승환;이영철
    • 한국주조공학회지
    • /
    • 제42권5호
    • /
    • pp.273-281
    • /
    • 2022
  • Al-Cu-Si 3원계 공정합금의 응고거동과 미세조직 변화를 이해하기 위해서, 금형 예열온도를 달리하여 Al-Cu-Si 3원계 공정합금의 미세조직 변화를 관찰하였다. 금형 예열온도가 500℃일 때, 초정 Si과 덴드라이트 형상의 Al2Cu상이 관찰되며, 이후 (α-Al+Al2Cu)의 2원계 공정상이 관찰된다. 금형 예열온도가 300℃일 때 미제조직은 금형 예열온도가 500℃일 때와 유사하나 (α-Al+Al2Cu+Si)의 3원계 공정상이 관찰되는 영역과 관찰되지 않는 영역이 나타난다. 금형 예열온도가 150℃인 경우에는 미세조직이 (α-Al+Al2Cu)의 2원계 공정상과 (α-Al+Al2Cu+Si)의 3원계 공정상이 관찰되는 Bimodal 구조를 나타낸다. 금형 예열온도를 달리 하였을 때 가장 큰 변화를 나타내는 상은 Si상이며, 임계냉각속도를 지나면 (α-Al+Al2Cu+Si)의 3원계 공정상이 형성되는 순간에 빠른 냉각에 의한 Si의 성장이 억제되면 Cooperative 성장을 하기 때문에 Al, Cu의 성장도 함께 억제된다. 서로 다른 합금설계 전산모사 프로그램을 통해 Al-27wt%Cu-5wt%Si의 3원계 공정 합금을 분석한 결과, 합금설계 전산모사 프로그램에 따라 결과의 차이가 발생하며, 전산모사의 신뢰성을 높이기 위해서는 실제 주조를 통한 미세조직 분석이 수반되어야 한다.